

September 15, 2022

### STRUCTURAL CALCULATIONS

(Permit Submittal)

### INTRACHAT HOANG RESIDENCE

7929 East Mercer Way Mercer Island, WA 98040

Quantum Job Number: 22252.01 Lindal Job Number: 42255

Prepared for: LINDAL CEDAR HOMES 6840 Fort Dent Way Suite 220 Seattle, WA 98188



Prepared by: QUANTUM CONSULTING ENGINEERS 1511 Third Avenue, Suite 323 Seattle, WA 98101 TEL 206.957.3900 FAX 206.957.3901



### **42255 INTRACHAT HOANG RESIDENCE** 7929 EAST MERCER WAY MERCER ISLAND WA, 98040

### QUANTUM JOB NUMBER: 22252.01

### **INDEX**

| DESIGN CRITERIA   | 1   |
|-------------------|-----|
| LATERAL DESIGN    | 17  |
| GRAVITY DESIGN    | 53  |
| FOUNDATION DESIGN | 171 |



### **42252 INTRACHAT RESIDENCE** 7929 EAST MERCER WAY MERCER ISLAND, WA 98040

QUANTUM JOB NUMBER: 22252.01

## DESIGN CRITERIA



### STRUCTURAL DESIGN CRITERIA

INTRACHAT HOANG RESIDENCE 7929 EAST MERCER WAY MERCER ISLAND, WA 98040

QUANTUM JOB NUMBER: 22252.01

| <u>CODE CRITERIA:</u><br>BUILDING CODE<br>BUILDING DEPARTMENT<br>WIND CRITERIA                                                                                                                      | CITY OF MERCER ISLAND<br>98 MPH; EXPOSURE "B"                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| SEISMIC ZONE                                                                                                                                                                                        |                                                                                                       |
| SNOW                                                                                                                                                                                                | $I_{E} = 1.0$<br>S_{S} = 1.46, S_{1} = 0.50<br>S_{DS} = 0.97, S_{D1} = 0.60<br>25 PSF                 |
| RAIN ON SNOW SURCHARGE (FLAT ROOF)<br>LIVE LOAD (RESIDENTIAL)<br>LIVE LOAD (RESIDENTIAL EXTERIOR DECKS AND                                                                                          | 40 PSF                                                                                                |
| SOILS CRITERIA:<br>FROST DEPTH<br>SOILS CONSULTANT<br>SOILS REPORT NUMBER.<br>SOILS REPORT DATE<br>ACTIVE SOIL PRESSURE (RESTRAINED / UNRES<br>SEISMIC SURCHARGE PRESSURE<br>PASSIVE SOIL PRESSURE. | . NELSON GEOTECHNICAL ASSOCIATES, INC.<br>#1276521<br>JANUARY 14, 2022<br>TRAINED)60 PCF / 40 PCF<br> |
| <u>MATERIALS CRITERIA:</u><br><u>CONCRETE (28 DAY STRENGTH):</u><br>FOUNDATION/S.O.G                                                                                                                |                                                                                                       |
| REINFORCING STEEL:<br>GRADE 60                                                                                                                                                                      |                                                                                                       |
| 6X FRAMING MBRS<br>GLULAM BEAMS<br>PARALLAM BEAMS<br>LSL MEMBERS – BEAMS & HEADERS                                                                                                                  |                                                                                                       |

### STRUCTURAL DESIGN CRITERIA

INTRACHAT HOANG RESIDENCE 7929 EAST MERCER WAY MERCER ISLAND, WA 98040

### QUANTUM JOB NUMBER: 22252.01

### ASSEMBLY WEIGHTS

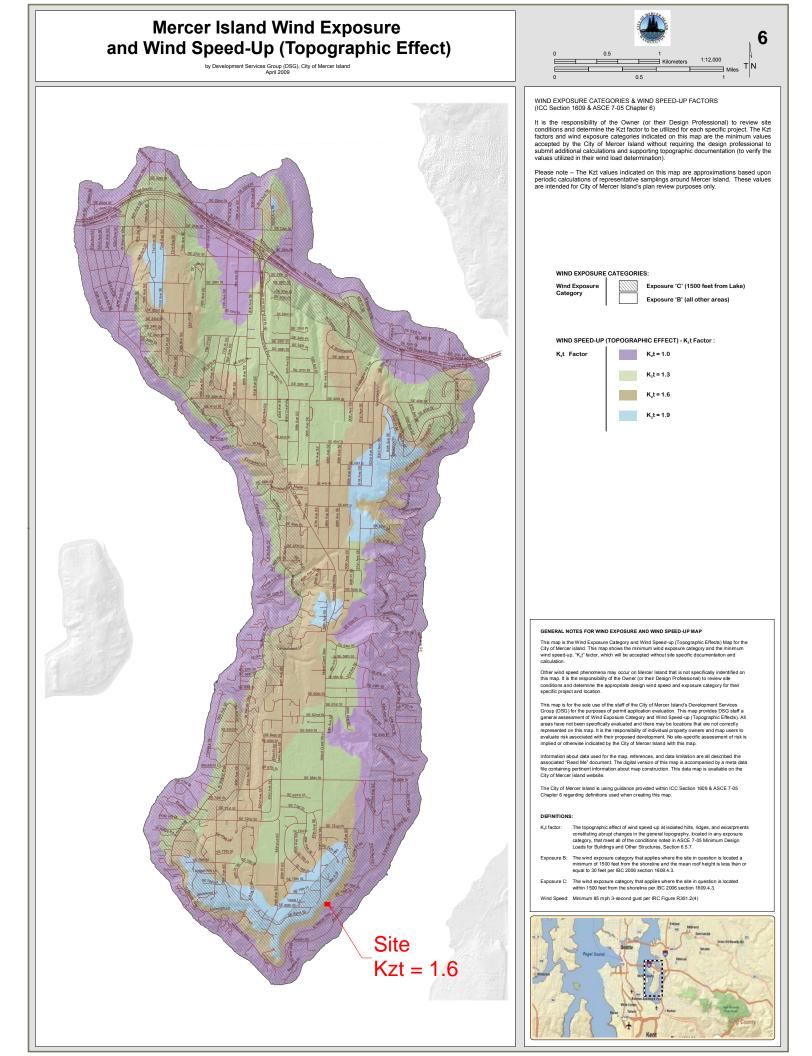
| ROOF LOADS                                                                                                                                    |          |                                                                                                                                                    | COMMENTS        |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| MEMBRANE ROOFING<br>5/8" PLYWOOD SHEATHING<br>ROOF JOISTS @ 16" O.C.<br>R38 INSULATION<br>LIGHTS, DUCTS<br>5/8" GWB<br>PV ALLOWANCE           |          | <ul> <li>2.0 PSF</li> <li>1.8 PSF</li> <li>2.2 PSF</li> <li>1.0 PSF</li> <li>0.5 PSF</li> <li>2.8 PSF</li> <li>4.0 PSF</li> </ul>                  | INCL. W/ MISC.  |
| MISCELLANEOUS                                                                                                                                 |          | 0.7 PSF                                                                                                                                            | FOR SEISMIC     |
|                                                                                                                                               | ROOF DL  | 16.0 PSF                                                                                                                                           | SL = 30 PSF     |
| FLOOR LOAD                                                                                                                                    |          |                                                                                                                                                    |                 |
| HARDWOOD FLOORING<br>3/4" SHEATHING<br>FLOOR JOISTS @ 16" O.C.<br>LIGHTS, DUCTS<br>5/8" GWB<br>MISCELLANEOUS                                  | FLOOR DL | 3.0       PSF         2.3       PSF         2.5       PSF         0.8       PSF         2.8       PSF         0.6       PSF         12.0       PSF | <br>LL = 40 PSF |
| DECK LOAD                                                                                                                                     |          |                                                                                                                                                    |                 |
| DECK BOARDS<br>2X RIPPED SLEEPERS<br>MEMBRANE ROOF<br>3/4" SHEATHING<br>FLOOR JOISTS @ 16" O.C.<br>LIGHTS, DUCTS<br>5/8" GWB<br>MISCELLANEOUS | FLOOR DL | 2.9 PSF<br>1.0 PSF<br>2.0 PSF<br>2.3 PSF<br>2.5 PSF<br>0.8 PSF<br>0.8 PSF<br>0.6 PSF<br>15.0 PSF                                                   | <br>LL = 60 PSF |

### ZEN GARDEN LOAD

| 2" PEBBLES              |          | 20.0 | PSF |              |
|-------------------------|----------|------|-----|--------------|
| 2X RIPPED SLEEPERS      |          | 1.0  | PSF |              |
| MEMBRANE ROOF           |          | 2.0  | PSF |              |
| 3/4" SHEATHING          |          | 2.3  | PSF |              |
| FLOOR JOISTS @ 16" O.C. |          | 2.5  | PSF |              |
| LIGHTS, DUCTS           |          | 0.8  | PSF |              |
| 5/8" GWB                |          | 2.8  | PSF |              |
| MISCELLANEOUS           |          | 0.6  | PSF |              |
|                         | FLOOR DL | 32.0 | PSF | LL = 100 PSF |

#### TABLE R301.2(1) CLIMATIC AND GEOGRAPHIC DESIGN CRITERIA

| ROOF                 |                             | wi                                  | ND DESIGN                |                          | SEISMIC SUBJECT TO DAMAGE FROM<br>DESIGN |                         | OUTDOOR          |                       | FLOOD<br>HAZARD <sup>e</sup> |                           | MEAN   |                      |      |
|----------------------|-----------------------------|-------------------------------------|--------------------------|--------------------------|------------------------------------------|-------------------------|------------------|-----------------------|------------------------------|---------------------------|--------|----------------------|------|
| LOAD a<br>(psf)      | Speed <sup>b</sup><br>(mph) | Topographic<br>effects <sup>c</sup> | Special wind region      | Windborne<br>debris zone | CATEGORY                                 | Weathering <sup>d</sup> | Frost line depth | Termite               | TEMP (F) -<br>Heat/Cool      | REQUIRED                  | HAZARD | INDEX                | TEMP |
| 25                   | 110                         | Yes                                 | No                       | No                       | D2                                       | Moderate                | 12"              | Slight to<br>Moderate | 83/24                        | No                        | N.A.   | 113                  | 53   |
|                      | MANUAL J DESIGN CRITERIA    |                                     |                          |                          |                                          |                         |                  |                       |                              |                           |        |                      |      |
| Elevation            |                             |                                     | Latitude                 | Winter<br>heating        | Summer cooling                           | Altit<br>correctio      |                  | Indoor<br>tempe       |                              | Design tempera<br>cooling | iture  | Heating te<br>differ |      |
|                      | 338 fee                     | t                                   | 47°34'39''               | 72°F max                 | 75°F min                                 | 0.9                     | 9                | 7                     | 2°F                          | 75°F                      |        | 48°                  | F    |
| Cooling<br>temperatu | ire differen                | ce                                  | Wind velocity<br>heating | Wind velocity<br>cooling | Coincident<br>wet bulb                   | Da<br>ran               |                  | Win<br>hum            |                              | Summer<br>humidity        |        |                      |      |
|                      | 8°F                         |                                     | N.A.                     | N.A.                     | 66                                       | Med                     | ium              | 7                     | 5%                           | 68%                       |        |                      |      |


a. This is the minimum roof snow load. When using this snow load it will be left to the engineer's judgment whether to consider drift or sliding snow. However, rain on snow surcharge of 5 psf must be considered for roof slopes less than 5 degrees.

b. The 110 mph Ultimate Design Wind Speed (3-second gust) as adopted by the 2018 IRC/ASCE 7-10 (or if using the IBC for structural design, the 98 mph Basic Design Wind Speed as adopted by the 2018 IBC/ASCE 7-16 may be used).

c. Wind exposure category and Topographic effects (Wind Speed-up Kzt factor) shall be determined on a site-specific basis by the Engineer of Record (components and cladding need not consider topographic effects unless otherwise determined by the engineer of record).

d. Weathering may require a higher strength concrete or grade of masonry than necessary to satisfy the structural requirements of this code. The grade of masonry units shall be determined from ASTM C 34, C 55, C 62, C 73, C 90, C 129, C 145, C 216 or C 652.

e. The City of Mercer Island participates in the National Flood Insurance Program (NFIP); Regular Program (No Special Flood Hazard Area). Further NFIP participation information: CID 530083, Initial FHBM Identified 06/28/74, Initial FIRM Identified 05/16/95, Current Effective Map Date (NSFHA), Reg-Emer Date 06/30/97, 53033C0654G effective 8/19/2020.



### ATC Hazards by Location

### **Search Information**

| Address:     | 7929 E Mercer Way, Mercer Island, WA 9804<br>USA |
|--------------|--------------------------------------------------|
| Coordinates: | 47.531256, -122.2212357                          |
| Elevation:   | 192 ft                                           |
| Timestamp:   | 2022-06-01T19:41:29.063Z                         |
| Hazard Type: | Wind                                             |



### ASCE 7-16

ASCE 7-10

### **ASCE 7-05**

ASCE 7-05 Wind Speed

| MRI 10-Year       | 67 mph  | MRI 10-Year          | 72 mph        |
|-------------------|---------|----------------------|---------------|
| MRI 25-Year       | 73 mph  | MRI 25-Year          | <b>79</b> mph |
| MRI 50-Year       | 78 mph  | MRI 50-Year          | 85 mph        |
| MRI 100-Year      | 83 mph  | MRI 100-Year         | 91 mph        |
| Risk Category I   | 92 mph  | Risk Category I      | 100 mph       |
| Risk Category II  | 97 mph  | Risk Category II     | 110 mph       |
| Risk Category III | 104 mph | Risk Category III-IV | 115 mph       |
| Risk Category IV  | 108 mph |                      |               |

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

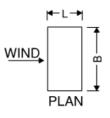
### Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area – in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the

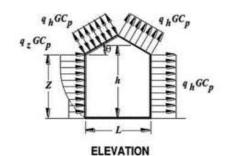
85 mph


### Wind Loads - Main Wind Force Resisting System

ASCE 7-16 Chapter 27.3 Part 1 - Enclosed Simple Diaphragm, h<160ft

| Wind Load Cri      | <u>teria</u> |                |                  |         |                 |
|--------------------|--------------|----------------|------------------|---------|-----------------|
| Risk Category:     | Ш            | Table 1.5-1    | K <sub>e</sub> : | 1       | Section 26.10.1 |
| Basic Wind Speed:  | 98 mph       | Figure 26.5.1  | K <sub>d</sub> : | 0.85    | Section 26.6    |
| Exposure Category: | В            | Section 26.7.3 | G:               | 0.85    | Section 26.11   |
| K <sub>zt</sub> :  | 1.60         | Section 26.8   | Wall Height:     | 25.0 ft |                 |

### L/B Ratio:


| Short Dimension:       | 43.5 ft   |
|------------------------|-----------|
| Long Dimension:        | 64.7 ft   |
| Transverse Wind L/B:   | 0.6726457 |
| Longitudinal Wind L/B: | 1.5       |



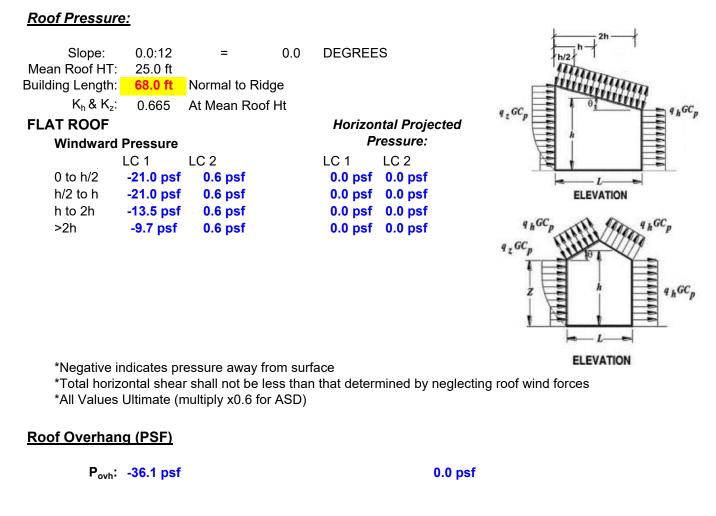
### \*NOTE: INTERNAL BUILDING PRESSURE CANCEL EACH OTHER OUT IN ENCLOSED BUILDING

### Wall Pressures:

| K <sub>h</sub> & K <sub>z</sub> : | 0.665 | At Top of Wall |
|-----------------------------------|-------|----------------|
| K <sub>z</sub> :                  | 0.57  | 0 ft to 15 ft  |



<u>Transverse</u> <u>Wind Direction</u> Top of Wall: 24.6 psf 0 ft to 15 ft Wall: 22.4 psf Longitudinal Wind Direction 22.7 psf 20.6 psf


ASCE EQ 27.3-1 ASCE EQ 27.3-1

\*Enveloped Leeward and Windward Pressure \*All Values Ultimate (multiply x0.6 for ASD)



| Quantum Consulting Engineers LLC | Project: | Intrachat Residence |
|----------------------------------|----------|---------------------|
| 1511 Third Avenue, Suite 323     |          |                     |
| Seattle, WA 98101                | Client:  | Lindal Cedar Homes  |

Date: 7/29/22 Job No: 22252 Designer: TVM Sheet: 2 Checked By: ASCE 7-16 Chapter 27.3 Part 1 - Enclosed Simple Diaphragm, h<160ft



```
Minimum Total Projected Horizontal Pressure (PSF)
```

ASCE 27.1.5

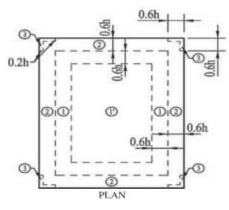
8.0 psf



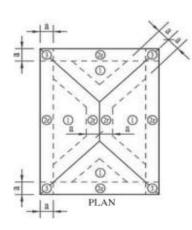
| Quantum Consulting Engineers LLC | Project: | Intrachat Residence | Date:       | 7/29/22 | Job No: # | ####### |
|----------------------------------|----------|---------------------|-------------|---------|-----------|---------|
| 1511 Third Avenue, Suite 323     |          |                     | Designer:   | TVM     | Sheet:    | 3       |
| Seattle, WA 98101                | Client:  | Lindal Cedar Homes  | Checked By: |         |           |         |

Wind Loads - Components and Cladding ASCE 7-16 Chapter 30.3 & 30.5 - Part 1 and Part 3 Enclosed Buildings With h<160 FT

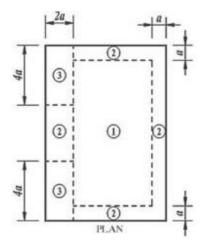
| <u>Wind Load Crite</u><br>Risk Category:<br>Basic Wind Speed: | eria<br>II<br>98 mph                          | Table 1.5-1<br>Figure 26.5.1 |                                                                      | K <sub>d</sub> :<br>Roof Type:         | 0.85<br>Flat                                             | Section 26.6                                |                                              |     |
|---------------------------------------------------------------|-----------------------------------------------|------------------------------|----------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------|---------------------------------------------|----------------------------------------------|-----|
| •                                                             | -                                             | -                            |                                                                      | Roof Slope:                            | 0.0:12                                                   | _                                           | 0.0                                          | DEG |
| Exposure Category:                                            | B                                             | Section 26.7.3               |                                                                      | •                                      |                                                          | =                                           | 0.0                                          | DEG |
| K <sub>zt</sub> :                                             | 1.60                                          | Section 26.8                 |                                                                      | Roof Height:                           | 25.0 ft                                                  |                                             |                                              |     |
| K <sub>e</sub> :                                              | 1.00                                          | Section 26.10.1              |                                                                      | Nall Height:                           | 25.0 ft                                                  |                                             |                                              |     |
| <b>Zone Dimensio</b><br>Least Horiz. BLDG I                   |                                               | : 110 ft                     |                                                                      | a: <b>10.0 ft</b><br>a: <b>20.0 ft</b> |                                                          |                                             |                                              |     |
| Wall Pressures                                                |                                               |                              |                                                                      |                                        |                                                          |                                             |                                              |     |
| Effective                                                     | Κ <sub>z</sub><br>Κ <sub>h</sub><br>Wind Area | : 0.665                      | Table 26.10-1<br>Table 26.10-1<br><b>400 ft^2</b><br><b>400 ft^2</b> | 0-15 ft (PA                            | ART 3)                                                   |                                             |                                              |     |
| Loa <u>d Case</u><br>1<br>2                                   | At Top of V<br>4<br>18.4<br>-20.4             | Wall<br>5<br>18.4<br>-20.7   | 0 FT TO 15 FT<br>4 5                                                 | (>60' bldg)                            |                                                          | $\square$                                   |                                              |     |
| *Okay to                                                      | interpolat                                    | •                            | way from surfac<br>5ft and top of w<br>).6 for ASD)                  |                                        | g)                                                       | ELEV                                        | ATION                                        |     |
| Roof Pressures                                                |                                               | K <sub>h</sub> :             | 0.665 Table                                                          | 26.10-1                                |                                                          |                                             |                                              |     |
|                                                               |                                               | Overhang?:                   |                                                                      |                                        |                                                          |                                             |                                              |     |
| Effective Wind Area:                                          | Zone 1<br>Zone 1'                             | 75 ft^2                      |                                                                      | Zone 2n:<br>Zone 2r:                   | 100 ft^2<br>100 ft^2<br>100 ft^2<br>100 ft^2<br>100 ft^2 | Zone 3:<br>Zone 3e:<br>Zone 3r:<br>Zone 3': | 100 ft^2<br>100 ft^2<br>100 ft^2<br>100 ft^2 |     |
| 4                                                             | Zone (PSF                                     | 5)                           |                                                                      |                                        |                                                          |                                             |                                              |     |
| Load Case 1                                                   | 1'                                            | -                            | Load Case                                                            |                                        | 2e                                                       | 2n 2r                                       |                                              | 2'  |
| 1 <b>8.7</b>                                                  | 8.7                                           | _                            |                                                                      | 1 <b>18.4</b>                          | -                                                        | -                                           | -                                            | -   |
| 2 -33.8                                                       | -16.0                                         |                              |                                                                      | 2 <b>-43.4</b>                         | -                                                        |                                             |                                              |     |
| Load Case 3<br>1 18.4<br>2 -43.4                              | 3e<br>-<br>-                                  | 3r<br>-<br>-                 | 3'<br>-<br>-                                                         | •                                      | •                                                        | oressure away<br>(multiply x0.6             |                                              | ace |



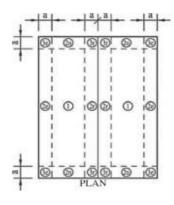

|   | Quantum Consulting Engineers LLC | Project: Intrachat |
|---|----------------------------------|--------------------|
|   | 1511 Third Avenue, Suite 323     |                    |
| < | Seattle, WA 98101                | Client: Lindal Ce  |


| Project: Intrachat Residence | Date: 7/29/22 | Job No:    | 22252.01 |
|------------------------------|---------------|------------|----------|
|                              | Designer: TVM | <br>Sheet: | 4        |
| Client: Lindal Cedar Homes ( |               |            |          |

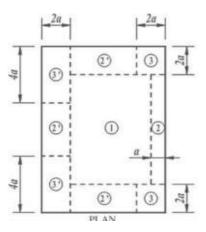
### Wind Loads - Components and Cladding (Cont.)


ASCE 7-16 Chapter 30 - Part 4 Enclosed Buildings With h<160 FT (Simplified)

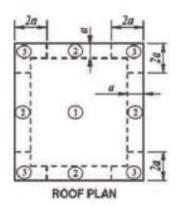



ASCE FIG 30.3-2A FLAT/GABLE ROOF θ <= 7°

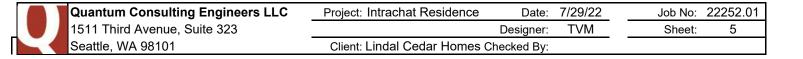



ASCE FIG 30.3-2E to I HIP ROOF 7°< θ <= 45°




ASCE FIG 30.3-5B Monoslope ROOF  $10^{\circ} < \theta \le 30^{\circ}$ 

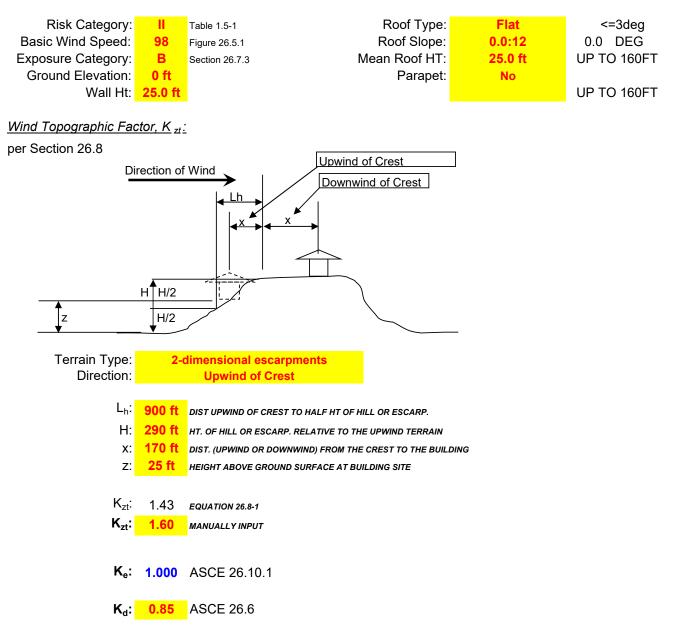



ASCE FIG 30.3-2B to D GABLE ROOF 7°< θ <= 45°



ASCE FIG 30.3-5A Monoslope ROOF 3°< θ <= 10°




ASCE FIG 30.5-1 ROOF H > 60ft, θ <= 7°



### Wind Loads Criteria

ASCE 7-16

### Wind Load Criteria





### ATC Hazards by Location

### **Search Information**

| Address:               | 7929 E Mercer Way, Mercer Island, WA 9804<br>USA |
|------------------------|--------------------------------------------------|
| Coordinates:           | 47.531256, -122.2212357                          |
| Elevation:             | 192 ft                                           |
| Timestamp:             | 2022-06-01T19:42:19.903Z                         |
| Hazard Type:           | Seismic                                          |
| Reference<br>Document: | ASCE7-16                                         |
| Risk Category:         | II                                               |
| Site Class:            | D                                                |
|                        |                                                  |



### **Basic Parameters**

| Name            | Value  | Description                                  |
|-----------------|--------|----------------------------------------------|
| SS              | 1.46   | MCE <sub>R</sub> ground motion (period=0.2s) |
| S <sub>1</sub>  | 0.504  | MCE <sub>R</sub> ground motion (period=1.0s) |
| S <sub>MS</sub> | 1.46   | Site-modified spectral acceleration value    |
| S <sub>M1</sub> | * null | Site-modified spectral acceleration value    |
| S <sub>DS</sub> | 0.974  | Numeric seismic design value at 0.2s SA      |
| S <sub>D1</sub> | * null | Numeric seismic design value at 1.0s SA      |

\* See Section 11.4.8

### Additional Information

| Name             | Value  | Description                               |
|------------------|--------|-------------------------------------------|
| SDC              | * null | Seismic design category                   |
| Fa               | 1      | Site amplification factor at 0.2s         |
| Fv               | * null | Site amplification factor at 1.0s         |
| CRS              | 0.902  | Coefficient of risk (0.2s)                |
| CR <sub>1</sub>  | 0.898  | Coefficient of risk (1.0s)                |
| PGA              | 0.624  | MCE <sub>G</sub> peak ground acceleration |
| F <sub>PGA</sub> | 1.1    | Site amplification factor at PGA          |
| PGA <sub>M</sub> | 0.687  | Site modified peak ground acceleration    |

| TL   | 6     | Long-period transition period (s)                                                        |
|------|-------|------------------------------------------------------------------------------------------|
| SsRT | 1.46  | Probabilistic risk-targeted ground motion (0.2s)                                         |
| SsUH | 1.619 | Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years) |
| SsD  | 4.317 | Factored deterministic acceleration value (0.2s)                                         |
| S1RT | 0.504 | Probabilistic risk-targeted ground motion (1.0s)                                         |
| S1UH | 0.561 | Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years) |
| S1D  | 1.636 | Factored deterministic acceleration value (1.0s)                                         |
| PGAd | 1.423 | Factored deterministic acceleration value (PGA)                                          |

\* See Section 11.4.8

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

### Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

# Seismic Base Shear for the Equivalent Lateral Force Procedure Per IBC 2018 & ASCE 7-16

| Structure: Intrachat Re           |              |                                                                                          |               |
|-----------------------------------|--------------|------------------------------------------------------------------------------------------|---------------|
| Address: <mark>7929 East M</mark> | ercer Way    |                                                                                          |               |
| Latitude:                         |              | Longitude:                                                                               |               |
|                                   |              |                                                                                          |               |
| Structure Classification          |              |                                                                                          |               |
| Risk Category :                   |              | per ASCE Table 1.5-1                                                                     |               |
| Colomia Fores Desisting Customs   | 1.5          | ght-Framed Wood Walls Sheathed with Structural Panels                                    |               |
| Seismic Force-Resisting System:   | ∟ıر<br>6 1/2 | -                                                                                        |               |
| R:<br>W <sub>o</sub> :            | 3            | per ASCE Table 12.2-1                                                                    |               |
| C <sub>d</sub> :                  | 3<br>4       | per ASCE Table 12.2-1<br>per ASCE Table 12.2-1                                           |               |
|                                   |              |                                                                                          |               |
| h <sub>n</sub> (ft):              | 30.00        | height above the base to the highest level of the structure                              |               |
| Site Ground Motion                |              |                                                                                          |               |
| Reg. Structure/5 Stories Max:     | No           | Per ASCE 12.8.1.3                                                                        |               |
| S S <sub>1</sub> (g-sec):         | 0.50         | S <sub>s</sub> (g-sec): <b>1.46</b>                                                      |               |
| Site Class:                       | D            | Per Geotechnical Report per ASCE 11.4.3                                                  |               |
|                                   | -            |                                                                                          |               |
| F <sub>v</sub> <b>1.80</b>        |              | F <sub>a</sub> 1.00                                                                      |               |
|                                   |              |                                                                                          |               |
| S <sub>M1</sub> (g-sec): 0.91     |              | S <sub>MS</sub> (g-sec): <b>1.46</b>                                                     | per ASCE 11.4 |
| S <sub>D1</sub> (g-sec): 0.60     |              | S <sub>DS</sub> (g-sec): 0.97                                                            | per ASCE 11.4 |
|                                   | per ASCE     |                                                                                          | po://co       |
|                                   | •            | Table 1.5-2                                                                              |               |
| 2                                 |              |                                                                                          |               |
| Fundamental Period per ASCE 12    |              |                                                                                          |               |
| Period Method:                    |              | imate Fundamental Period                                                                 |               |
| Structure Type:                   |              | ther Structural Systems                                                                  |               |
| T <sub>L</sub> (sec):             | 6.00         | ASCE Figures 22-14 through 22-17                                                         |               |
| T <sub>s</sub> :                  | 0.62         |                                                                                          |               |
|                                   | 0.06         |                                                                                          |               |
| Ta (sec):                         | 0.26         | Ct * hnx per ASCE Eq. 12.8-7                                                             |               |
| T <sub>use</sub> (sec):           | 0.26         | - <= TL                                                                                  |               |
|                                   |              |                                                                                          |               |
| Equivalent Lateral Force Procedu  | ure Desigr   | n Base Shear per ASCE 12.8                                                               |               |
| C <sub>s</sub> :                  | 0.15         | = S <sub>DS</sub> / (R/I <sub>E</sub> ) per ASCE Eq. 12.8-2                              |               |
| C <sub>s-max</sub> :              | 0.36         | = $S_{D1}/(T_a*R/I_E)$ for T <= $T_L$ per ASCE Eq. 12.8-3                                |               |
| C <sub>s-max</sub> :              | 8            | = $S_{D1}^{*}T_{L} / (T_{a}^{2*}R/I_{E})$ for T > $T_{L}$ per ASCE Eq. 12.8-4            |               |
| C <sub>s-min</sub> :              | 0.04         | per ASCE Eq. 12.8-5                                                                      |               |
| C <sub>s-min</sub> :              |              | = 0.5S <sub>1</sub> / (R/I <sub>E</sub> ) for S <sub>1</sub> => 0.6g per ASCE Eq. 12.8-6 |               |
| C <sub>s-use</sub> :              | 0.150        |                                                                                          |               |
|                                   |              |                                                                                          |               |
| <b>v</b> :                        | 0.150 W      | = C <sub>S-use</sub> * W per ASCE Eq. 12.8-1                                             |               |
|                                   |              |                                                                                          |               |



| Quantum Consulting Engineers LLC | Project: | Intrachat Residence | Date:       | 7/29/22 | Job No: | 22252.01 |
|----------------------------------|----------|---------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |          |                     | Designer:   | TVM     | Sheet:  | 1        |
| Seattle, WA 98101                | Client:  | Lindal Cedar Homes  | Checked By: |         |         |          |

Per IBC 2018 & ASCE 7-16

Structure: Intrachat Residence

### Seismic Parameters

| I <sub>E</sub> :         | 1.00 | per ASCE Table 1.5-2 |
|--------------------------|------|----------------------|
| S <sub>DS</sub> (g-sec): | 0.97 | per ASCE 11.4.4      |
| Period (Sec):            | 0.26 | per ASCE 12.8.2.1    |
| k:                       | 1.00 | per ASCE 12.8.3      |

### Vertical Distribution of Seismic Forces per ASCE 12.8.3

$$\label{eq:Fx} \begin{split} F_x &= C_{vx} V \text{ per ASCE Eq. 12.8-11} \\ C_{vx} &= (w_x h_x^{\ k}) / (Sw_i h_i^{\ k}) \text{ per ASCE Eq. 12.8-12} \end{split}$$

| Level  | h <sub>x</sub> (ft) | w <sub>x</sub> (k) | $\%$ of $W_{\text{total}}$ | $w_x * h_x^k$ | C <sub>vx</sub> (%) | F <sub>x</sub> (k) | V <sub>x</sub> (k) |
|--------|---------------------|--------------------|----------------------------|---------------|---------------------|--------------------|--------------------|
| Roof   | 30.17               | 74.15              | 42.0%                      | 2237.1        | 61.2%               | 16.16              |                    |
| Second | 19.67               | 45.98              | 26.1%                      | 904.3         | 24.7%               | 6.53               | 16.16              |
| First  | 9.17                | 56.31              | 31.9%                      | 516.4         | 14.1%               | 3.73               | 22.69              |
|        |                     |                    |                            |               |                     |                    | 26.42              |
|        |                     |                    |                            |               |                     |                    |                    |
|        |                     |                    |                            |               |                     |                    |                    |
|        |                     |                    |                            |               |                     |                    |                    |
|        | Total WT (k):       | 176.44             | Sum:                       | 3658          |                     |                    |                    |
|        | <u> </u>            | 0 4 5 0            |                            |               |                     |                    |                    |

C<sub>s-use</sub>: 0.150

V (k): 26.42 per ASCE 12.8.1

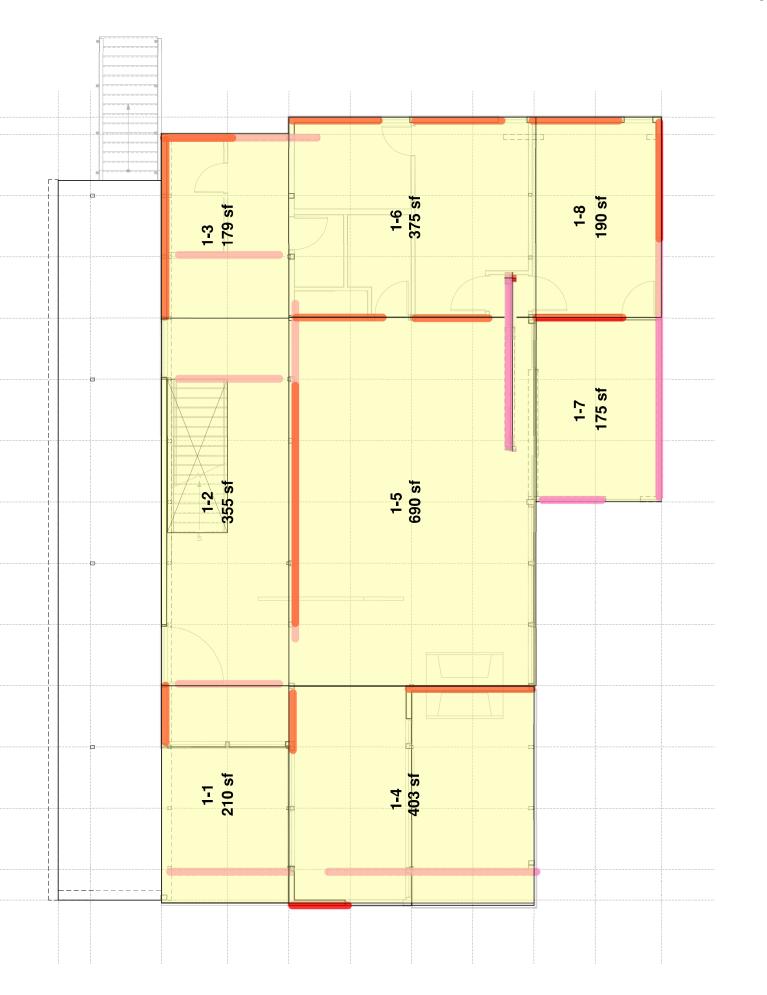
### Vertical Distribution of Seismic Diaphragm Forces per ASCE 12.10.1.1

$$\begin{split} F_{px} &= (SF_i/Sw_i) * w_{px} \, \text{per ASCE Eq 12.10-1} \\ F_{px-max} &= 0.4 * S_{DS} * I_E * w_{px} \, \text{per per ASCE 12.10.1.1} \\ F_{px-min} &= 0.2 * S_{DS} * I_E * w_{px} \, \text{per per ASCE 12.10.1.1} \end{split}$$

Diaphragm/Story

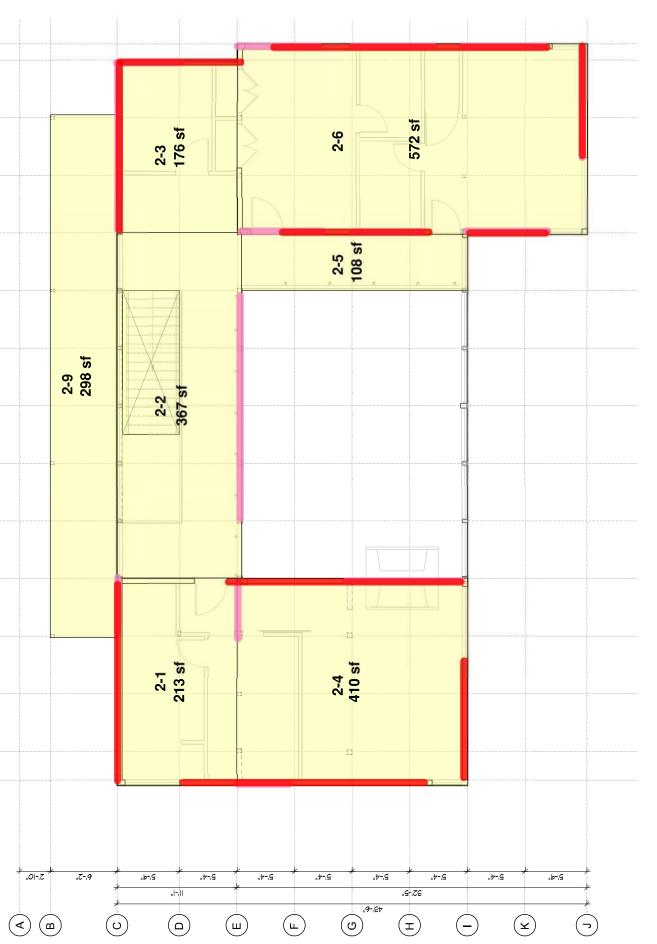
| Level  | w <sub>px</sub> (k) | Σw <sub>i</sub> (k) | F <sub>x</sub> (k) | ΣF <sub>i</sub> (k) | F <sub>px</sub> (k) | Notes    | Force Ratio |
|--------|---------------------|---------------------|--------------------|---------------------|---------------------|----------|-------------|
| Roof   | 74.15               | 74.15               | 16.16              | 16.16               | 16.16               |          | 1.000       |
| Second | 45.98               | 120.13              | 6.53               | 22.69               | 8.95                | = Fp-min | 1.370       |
| First  | 56.31               | 176.44              | 3.73               | 26.42               | 10.96               | = Fp-min | 2.939       |
|        |                     |                     |                    |                     |                     |          |             |
|        |                     |                     |                    |                     |                     |          |             |
|        |                     |                     |                    |                     |                     |          |             |
|        |                     |                     |                    |                     |                     |          |             |




| Y | Quantum Consulting Engineers LLC | Project: Intrachat Residence | Date: 7/29/22 | Job No: | 22252.01 |
|---|----------------------------------|------------------------------|---------------|---------|----------|
|   | 1511 Third Avenue, Suite 323     |                              | Designer: TVM | Sheet:  | 2        |
|   | Seattle, WA 98101                | Client: Lindal Cedar Homes   | Checked By:   |         |          |

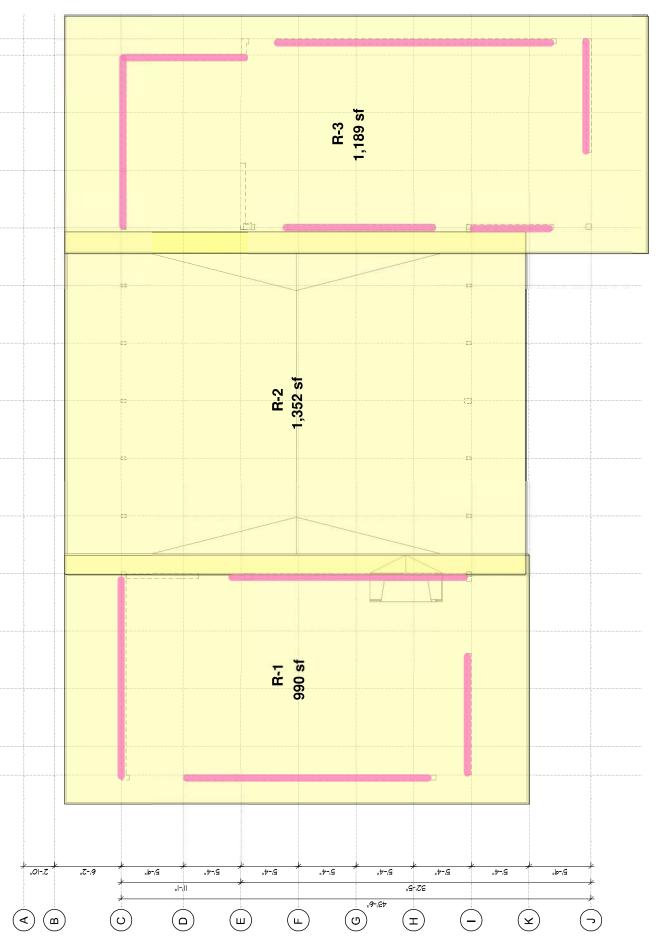


### **42252 INTRACHAT RESIDENCE** 7929 EAST MERCER WAY MERCER ISLAND, WA 98040


QUANTUM JOB NUMBER: 22252.01

## LATERAL FRAMING DESIGN

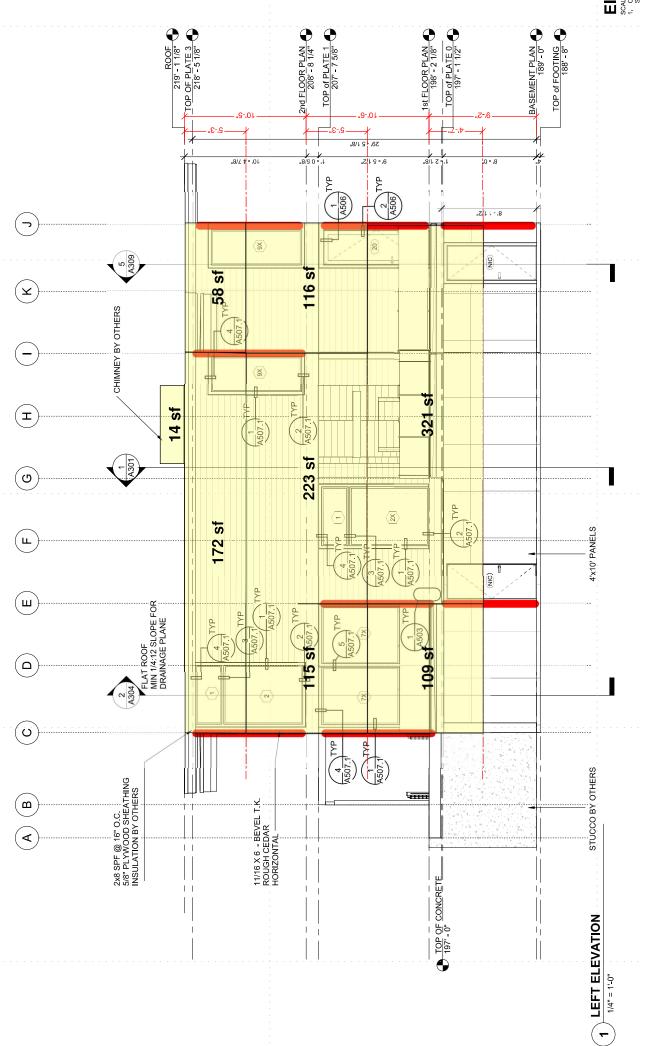


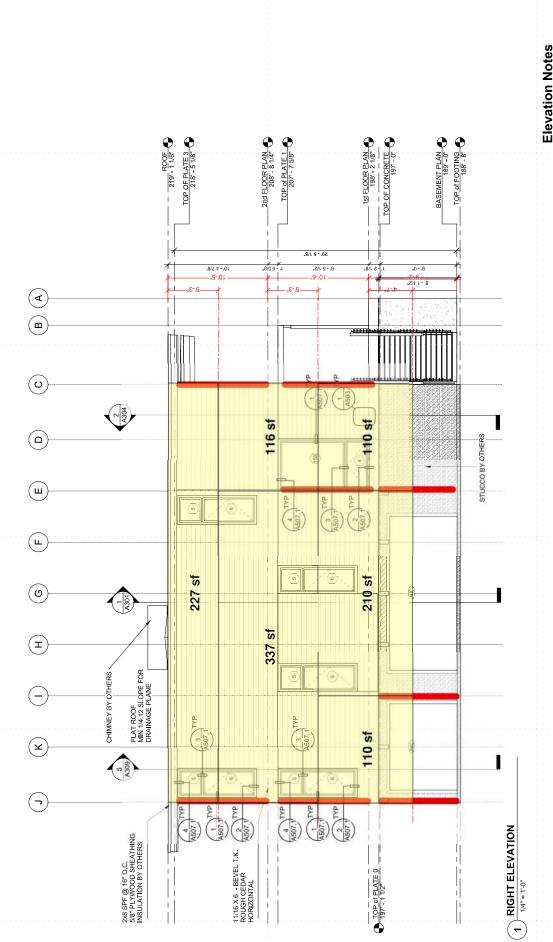

EIRST FLOOR FRAMING PLAN

18






File: 252–5202.4wg Piotted: Thu, 06/02/2022 5:29 pm




BROOF FRAMING PLAN SCALE: 1/4" = 1'-0'

ma 252-s203.dwg Plotted: Thu, 06/02/2022 3:29 pm







Elevation Notes
 Rout M. 1. 197
 Rout M. 1. 197
 Rout M. 1. 197
 Routh M. 1. 197
 Routh M. 1. 197
 Routh M. 1. 197
 Routh M. 197
 Routh Resonance and the Rest Routh Carlor Survey and Routh Resonance and Resonance and Rest Routh Resonance and Resonan

### **Diaphragm Load Seismic Distribution**

Structure:Intrachat ResidenceAddress:7929 East Mercer Way Mercer Island WAFloor:Roof LevelDirection:Both Direction

**Fx: 0.218 W** From QCE Seismic Spreadsheet. DL = 16 psf + 5 psf for Walls

| Area | Flo       | oor    |      |        |      |        | Total   | Seismic |
|------|-----------|--------|------|--------|------|--------|---------|---------|
|      | Area      | Weight | Area | Weight | Area | Weight | Weight  | Force   |
| R-1  | 990 sqft  | 21 psf |      |        |      |        | 20.79 k | 4.53 k  |
| R-2  | 1352 sqft | 21 psf |      |        |      |        | 28.39 k | 6.19 k  |
| R-3  | 1189 sqft | 21 psf |      |        |      |        | 24.97 k | 5.44 k  |
|      |           |        |      |        |      |        | 0.00 k  | 0.00 k  |
|      |           |        |      |        |      |        | 0.00 k  | 0.00 k  |
|      |           |        |      |        |      |        | 0.00 k  | 0.00 k  |
|      |           |        |      |        |      |        | 0.00 k  | 0.00 k  |
|      |           |        |      |        |      |        | 0.00 k  | 0.00 k  |
|      |           |        |      |        |      |        | 0.00 k  | 0.00 k  |
|      |           |        |      |        |      |        | 0.00 k  | 0.00 k  |
|      | 3531 sqft |        |      |        |      |        | 74.15 k | 16.16 k |

### Percent of Diaphragm Supported By Shear Wall

| Area           | Grid 1 | Grid 5 | Grid 11 | Grid 14 | Grid C |        | Grid I | Grid J |        |
|----------------|--------|--------|---------|---------|--------|--------|--------|--------|--------|
| R-1            | 50%    | 50%    |         |         | 50%    |        | 50%    |        |        |
| R-2            |        | 50%    | 50%     |         | 50%    |        | 30%    | 20%    |        |
| R-3            |        |        | 50%     | 50%     | 50%    |        |        | 50%    |        |
| 0              |        |        |         |         |        |        |        |        |        |
| 0              |        |        |         |         |        |        |        |        |        |
| 0              |        |        |         |         |        |        |        |        |        |
| 0              |        |        |         |         |        |        |        |        |        |
| 0              |        |        |         |         |        |        |        |        |        |
| 0              |        |        |         |         |        |        |        |        |        |
| 0              |        |        |         |         |        |        |        |        |        |
| Seismic Force: | 2.27 k | 5.36 k | 5.81 k  | 2.72 k  | 8.08 k | 0.00 k | 4.12 k | 3.96 k | 0.00 k |

| - * | Quantum Consulting Engineers LLC | Project: 42252 - In | trachat   |         | Job No:  | 22252.01 |
|-----|----------------------------------|---------------------|-----------|---------|----------|----------|
| J   | 1511 Third Avenue, Suite 323     | Client: Lindal Ceo  | dar Homes |         | Sheet:   |          |
|     | Seattle, WA 98101                | Designer: TVM       | Date:     | 7/29/22 | Chkd By: |          |

### **Diaphragm Load Seismic Distribution**

Structure:Intrachat ResidenceAddress:7929 East Mercer Way Mercer Island WAFloor:Second FloorDirection:Both Direction

**Fx: 0.142 W** From QCE Seismic Spreadsheet. DL = 12 psf +10 psf for Walls

| Area | Fle       | oor    |      |        |      |        | Total   | Seismic |
|------|-----------|--------|------|--------|------|--------|---------|---------|
|      | Area      | Weight | Area | Weight | Area | Weight | Weight  | Force   |
| 2-1  | 213 sqft  | 22 psf |      |        |      |        | 4.69 k  | 0.67 k  |
| 2-2  | 367 sqft  | 22 psf |      |        |      |        | 8.07 k  | 1.15 k  |
| 2-3  | 176 sqft  | 22 psf |      |        |      |        | 3.87 k  | 0.55 k  |
| 2-4  | 410 sqft  | 22 psf |      |        |      |        | 9.02 k  | 1.28 k  |
| 2-5  | 108 sqft  | 22 psf |      |        |      |        | 2.38 k  | 0.34 k  |
| 2-6  | 572 sqft  | 22 psf |      |        |      |        | 12.58 k | 1.79 k  |
|      |           |        |      |        |      |        | 0.00 k  | 0.00 k  |
|      |           |        |      |        |      |        | 0.00 k  | 0.00 k  |
| 2-9  | 298 sqft  | 18 psf |      |        |      |        | 5.36 k  | 0.76 k  |
|      |           |        |      |        |      |        | 0.00 k  | 0.00 k  |
|      | 2144 sqft |        |      |        |      |        | 45.98 k | 6.53 k  |

### Percent of Diaphragm Supported By Shear Wall

| Area           | Grid 1 | Grid 5 | Grid 11 | Grid 14 | Grid C  | Grid E       |             | Grid J |        |
|----------------|--------|--------|---------|---------|---------|--------------|-------------|--------|--------|
| 2-1            | 50%    | 50%    |         |         | 50%     | 50%          |             |        |        |
| 2-2            |        | 50%    | 50%     |         | 50%     | 50%          |             |        |        |
| 2-3            |        |        | 50%     | 50%     | 50%     | 50%          |             |        |        |
| 2-4            | 50%    | 50%    |         |         |         | 100%         |             |        |        |
| 2-5            |        |        | 100%    |         |         | 60%          |             | 40%    |        |
| 2-6            |        |        | 50%     | 50%     |         | 50%          |             | 50%    |        |
| 0              |        |        |         |         |         |              |             |        |        |
| 0              |        |        |         |         |         |              |             |        |        |
| 2-9            |        | 45%    | 50%     | 5%      | 100%    |              |             |        |        |
| 0              |        |        |         |         |         |              |             |        |        |
|                |        |        |         |         |         |              |             |        |        |
| Seismic Force: | 0.97 k | 1.89 k | 2.46 k  | 1.21 k  | 1.94 k  | 3.56 k       | 0.00 k      | 1.03 k | 0.00 k |
| Wall Above     | 2.27 k | 5.36 k | 5.81 k  | 2.72 k  | 8.08 k  | 4.12 k       |             | 3.96 k | 0.00 k |
| Total          | 3.24 k | 7.25 k | 8.28 k  | 3.93 k  | 10.02 k | 7.68 k       | 0.00 k      | 4.99 k | 0.00 k |
|                |        |        |         |         |         | (Grid I tran | sfers to Gr | id E)  |        |

| Quantum Consulting Engineers LLC | Project: 42252 - Int | rachat   |         | Job No:  | 22252.01 |
|----------------------------------|----------------------|----------|---------|----------|----------|
| 1511 Third Avenue, Suite 323     | Client: Lindal Ced   | ar Homes |         | Sheet:   |          |
| Seattle, WA 98101                | Designer: TVM        | Date:    | 7/29/22 | Chkd By: |          |

25

### **Diaphragm Load Seismic Distribution**

Structure:Intrachat ResidenceAddress:7929 East Mercer Way Mercer Island WAFloor:First FloorDirection:Both Direction

Fx: 0.066 W From QCE Seismic Spreadsheet. Floor DL = 12 psf + 10 psf for Walls Deck DL = 15 psf + 6 psf for Walls

| Area | Fl        | oor    |      |        |      |        | Total   | Seismic |
|------|-----------|--------|------|--------|------|--------|---------|---------|
|      | Area      | Weight | Area | Weight | Area | Weight | Weight  | Force   |
| 1-1  | 210 sqft  | 21 psf |      |        |      |        | 4.41 k  | 0.29 k  |
| 1-2  | 355 sqft  | 22 psf |      |        |      |        | 7.81 k  | 0.52 k  |
| 1-3  | 179 sqft  | 22 psf |      |        |      |        | 3.94 k  | 0.26 k  |
| 1-4  | 403 sqft  | 22 psf |      |        |      |        | 8.87 k  | 0.59 k  |
| 1-5  | 690 sqft  | 22 psf |      |        |      |        | 15.18 k | 1.01 k  |
| 1-6  | 375 sqft  | 22 psf |      |        |      |        | 8.25 k  | 0.55 k  |
| 1-7  | 175 sqft  | 21 psf |      |        |      |        | 3.68 k  | 0.24 k  |
| 1-8  | 190 sqft  | 22 psf |      |        |      |        | 4.18 k  | 0.28 k  |
|      |           |        |      |        |      |        | 0.00 k  | 0.00 k  |
|      |           |        |      |        |      |        | 0.00 k  | 0.00 k  |
|      | 2577 sqft |        |      |        |      |        | 56.31 k | 3.73 k  |

### Percent of Diaphragm Supported By Shear Wall

| Area           | Grid 1 | Grid 5 | Grid 11 | Grid 14 | Grid C    | Grid E |        | Grid J |        |
|----------------|--------|--------|---------|---------|-----------|--------|--------|--------|--------|
| 1-1            | 50%    | 50%    |         |         | 50%       | 50%    |        |        |        |
| 1-2            |        | 50%    | 50%     |         | 50%       | 50%    |        |        |        |
| 1-3            |        |        | 50%     | 50%     | 50%       | 50%    |        |        |        |
| 1-4            | 50%    | 50%    |         |         |           | 67%    |        | 33%    |        |
| 1-5            |        | 50%    | 50%     |         |           | 67%    |        | 33%    |        |
| 1-6            |        |        | 50%     | 50%     |           | 67%    |        | 33%    |        |
| 1-7            |        | 25%    | 75%     |         |           | 33%    |        | 67%    |        |
| 1-8            |        |        | 50%     | 50%     |           | 33%    |        | 67%    |        |
|                |        |        |         |         |           |        |        |        |        |
|                |        |        |         |         |           |        |        |        |        |
| Seismic Force: | 0.44 k | 1.26 k | 1.49 k  | 0.54 k  | 0.54 k    | 2.14 k | 0.00 k | 1.05 k | 0.00 k |
| Wall Above     | 3.24 k | 7.25 k | 8.28 k  | 3.93 k  | 10.02 k   | 7.68 k | 0.00 k | 4.99 k | 0.00 k |
| Total          | 3.68 k | 8.51 k | 9.76 k  | 4.47 k  | 10.56 k   | 9.82 k | 0.00 k | 6.04 k | 0.00 k |
|                |        |        |         |         | (FND Wall | )      |        |        |        |

| Quantum Consulting Engineers LLC | Project: 42252 - Intrac | hat   |         | Job No:  | 22252.01 |
|----------------------------------|-------------------------|-------|---------|----------|----------|
| 1511 Third Avenue, Suite 323     | Client: Lindal Cedar I  | Homes |         | Sheet:   |          |
| Seattle, WA 98101                | Designer: TVM           | Date: | 9/14/22 | Chkd By: |          |

### **Diaphragm Load Wind Distribution**

Structure: McCormick Residence

Address: 2515 Nob Hill PI N. Seattle WA Floor: All Levels

Direction: North - South

Seattle, WA 98101

| Shear Wall       | Are        | ea 1     | Are      | a 2      | Wall Above         | Load    |  |
|------------------|------------|----------|----------|----------|--------------------|---------|--|
|                  | Area       | WL       | Area     | WL       | WL                 |         |  |
| Roof Level       |            |          |          |          |                    |         |  |
| Grid 1           | 51 sqft    | 24.6 psf |          |          |                    | 1.25 k  |  |
| Grid 5           | 51 sqft    | 24.6 psf | 152 sqft | 24.6 psf |                    | 4.98 k  |  |
| Grid 11          | 152 sqft   | 24.6 psf | 47 sqft  | 24.6 psf |                    | 4.87 k  |  |
| Grid 14          | 47 sqft    | 24.6 psf |          |          |                    | 1.14 k  |  |
|                  |            |          |          |          |                    |         |  |
| Second Flr       |            |          |          |          |                    |         |  |
| Grid 1           | 100 sqft   | 24.6 psf |          |          | 1.25 k             | 3.71 k  |  |
| Grid 5           | 100 sqft   | 24.6 psf |          |          | 4.98 k             | 7.44 k  |  |
| Grid 11          | 92 sqft    | 24.6 psf |          |          | 4.87 k             | 7.12 k  |  |
| Grid 14          | 92 sqft    | 24.6 psf |          |          | 1.14 k             | 3.39 k  |  |
|                  |            |          |          |          |                    | 0.00 k  |  |
| Roof Level       |            |          |          |          |                    |         |  |
| Grid C           | 114 sqft   | 24.6 psf |          |          |                    | 2.79 k  |  |
|                  |            |          |          |          |                    | 0.00 k  |  |
| Grid I           | 86 sqft    | 24.6 psf | 14 sqft  | 24.6 psf |                    | 2.46 k  |  |
| Grid J           | 114 sqft   | 24.6 psf |          |          |                    | 2.79 k  |  |
|                  |            |          |          |          |                    |         |  |
| Second Flr       |            |          |          |          |                    |         |  |
| Grid C           | 58 sqft    | 24.6 psf |          |          | 2.79 k             | 4.22 k  |  |
| Grid E           | 223 sqft   | 24.6 psf | 58 sqft  | 24.6 psf | 2.46 k             | 9.36 k  |  |
|                  |            |          |          |          |                    | 0.00 k  |  |
| Grid J           | 169 sqft   | 24.6 psf |          |          | 2.79 k             | 6.94 k  |  |
|                  |            |          |          |          |                    | 0.00 k  |  |
| <u>First Flr</u> |            |          |          |          |                    |         |  |
| Grid C           | 55 sqft    | 24.6 psf |          |          | 4.22 k             | 5.57 k  |  |
| Grid E           | 55 sqft    | 24.6 psf | 161 sqft | 24.6 psf | 9.36 k             | 14.66 k |  |
|                  |            |          |          |          |                    |         |  |
| Grid J           | 161 sqft   | 24.6 psf |          |          | 6.94 k             | 10.89 k |  |
|                  |            |          |          |          |                    | 0.00 k  |  |
|                  |            |          |          |          |                    | 0.00 k  |  |
|                  |            |          |          |          |                    |         |  |
|                  | Consulting | •        |          |          | 42252 - Intrachat  |         |  |
| 1511 Third       | Avenue, Su | uite 323 |          | Client:  | Lindal Cedar Homes |         |  |

Designer: TVM

9/14/22

Date:

Chkd By:

Structure: Intrachat Residence

Floor Level: Walls Below Roof Level North South

Sds =

0.97

17.25

Depth of Floor Framing & Plates (Clearspan) at Interstory (in) =

| SW Marl    | ĸ     | L <sub>sw</sub> (ft) | Wall Pier<br>h <sub>wp</sub> (ft) | Aspect<br>Ratio | Wall Framing<br>Species | Specific<br>Gravity G | Interstory of<br>Base? | h <sub>sw</sub> (ft) | Wall Wt.<br>(psf) | Roof/Floor<br>Trib. (ft) | Roof/Floor<br>Wt. (psf) |
|------------|-------|----------------------|-----------------------------------|-----------------|-------------------------|-----------------------|------------------------|----------------------|-------------------|--------------------------|-------------------------|
| SW GRID    | 1     | 23.33                | -                                 | -               | -                       | -                     | -                      | -                    | -                 | -                        | -                       |
| SW Segment | 1.10  | 23.33                | 9.50                              | 0.41            | S-P-F #1/#2             | 0.42                  | Interstory             | 9.50                 | 12.0              | 12.5                     | 16.0                    |
|            |       |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
| SW GRID    | 5     | 20.50                | -                                 | -               | -                       | -                     | -                      | -                    | -                 | -                        | -                       |
| SW Segment | 5.10  | 20.50                | 9.50                              | 0.46            | S-P-F #1/#2             | 0.42                  | Interstory             | 9.50                 | 12.0              | 14.0                     | 16.0                    |
|            |       |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
| SW GRID    | 11    | 21.67                | -                                 | -               | -                       | -                     | -                      | -                    | -                 | -                        | -                       |
| SW Segment | 11.10 | 8.00                 | 9.50                              | 1.19            | S-P-F #1/#2             | 0.42                  | Interstory             | 9.50                 | 12.0              | 11.0                     | 16.0                    |
| SW Segment | 11.20 | 13.67                | 9.50                              | 0.69            | S-P-F #1/#2             | 0.42                  | Interstory             | 9.50                 | 12.0              | 13.5                     | 16.0                    |
|            |       |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
| SW GRID    | 14    | 38.00                | -                                 | -               | -                       | -                     | -                      | -                    | -                 | -                        | -                       |
| SW Segment | 14.10 | 26.00                | 9.50                              | 0.37            | S-P-F #1/#2             | 0.42                  | Interstory             | 9.50                 | 12.0              | 11.0                     | 16.0                    |
| SW Segment | 14.20 | 12.00                | 9.50                              | 0.79            | S-P-F #1/#2             | 0.42                  | Interstory             | 9.50                 | 12.0              | 11.0                     | 16.0                    |
|            |       |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
|            |       |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |

#### Shear Wall Loads and Summary

| SW Mark    |       | EQ (lb) Wall<br>(ULT) | Wind (lb) Wall<br>(ULT) | Wall DL (lb) | Wall DL (lb)<br>End 1 | Wall DL (lb)<br>End 2 | Shear Wall Type | MIN. # of<br>End Studs | Holdown            |
|------------|-------|-----------------------|-------------------------|--------------|-----------------------|-----------------------|-----------------|------------------------|--------------------|
| SW GRID    | 1     | 2265                  | 1255                    | -            | -                     | -                     | -               | -                      | -                  |
| SW Segment | 1.10  | 2265                  | 1255                    | 7326         |                       |                       | SW-6            | 2                      | No Strap           |
|            |       |                       |                         |              |                       |                       |                 |                        |                    |
|            |       |                       |                         |              |                       |                       |                 |                        |                    |
| SW GRID    | 5     | 5359                  | 4982                    |              |                       |                       | -               | -                      | -                  |
| SW Segment | 5.10  | 5359                  | 4982                    | 6929         | 1000                  | 1000                  | SW-6            | 2                      | No Strap           |
|            |       |                       |                         |              |                       |                       |                 |                        |                    |
|            |       |                       |                         |              |                       |                       |                 |                        |                    |
| SW GRID    | 11    | 5814                  | 4871                    |              |                       |                       | -               | -                      | -                  |
| SW Segment | 11.10 | 2146                  | 1798                    | 2320         |                       |                       | SW-6            | 2                      | MSTC40 (3070 max.) |
| SW Segment | 11.20 | 3668                  | 3073                    | 4511         |                       |                       | SW-6            | 2                      | MSTC40 (3070 max.) |
|            |       |                       |                         |              |                       |                       |                 |                        |                    |
| SW GRID    | 14    | 2721                  | 1144                    |              |                       |                       | -               | -                      | -                  |
| SW Segment | 14.10 | 1861                  | 783                     | 7540         |                       |                       | SW-6            | 2                      | No Strap           |
| SW Segment | 14.20 | 859                   | 361                     | 3480         |                       |                       | SW-6            | 2                      | No Strap           |
|            |       |                       |                         |              |                       |                       |                 |                        |                    |
|            |       |                       |                         |              |                       |                       |                 |                        |                    |

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 7/29/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 1        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

#### Structure: Intrachat Residence

Floor Level: Walls Below Roof Level North South

| Shear Wall Type | Sheathing Grade, Sheathing Thickness, & Nail Size | Panel Edge<br>Nail<br>Spacing (in) | Nominal Seismic<br>SW Capacity (plf) | LRFD<br>Seismic SW<br>Capacity<br>(plf) | Nominal<br>Wind SW<br>Capacity<br>(plf) | LRFD Wind<br>SW<br>Capacity<br>(plf) | Sheathing<br>Shear<br>Stiffness, G<br>(Ib/in) |
|-----------------|---------------------------------------------------|------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------|-----------------------------------------------|
| SW-6            | APA Rated, 7/16", 8d Common                       | 6                                  | 520                                  | 416                                     | 730                                     | 584                                  | 10                                            |
| SW-4            | APA Rated, 7/16", 8d Common                       | 4                                  | 760                                  | 608                                     | 1065                                    | 852                                  | 13                                            |
| SW-3            | APA Rated, 7/16", 8d Common                       | 3                                  | 980                                  | 784                                     | 1370                                    | 1096                                 | 15                                            |
| SW-2            | APA Rated, 7/16", 8d Common                       | 2                                  | 1280                                 | 1024                                    | 1790                                    | 1432                                 | 20                                            |
| 2SW-4           | APA Rated, 7/16", 8d Common                       | 4                                  | 1520                                 | 1216                                    | 2130                                    | 1704                                 | 26                                            |
| 2SW-3           | APA Rated, 7/16", 8d Common                       | 3                                  | 1960                                 | 1568                                    | 2740                                    | 2192                                 | 30                                            |
| 2SW-2           | APA Rated, 7/16", 8d Common                       | 2                                  | 2560                                 | 2048                                    | 3580                                    | 2864                                 | 40                                            |

### Determine Shear Wall Type (LRFD)

| SW Segment Mark | Seismic Shear<br>(plf) | Aspect Ratio<br>Reduction | Adjusted<br>Seismic<br>Shear (plf) | Wind Shear<br>(plf) | Adjusted<br>Wind Shear<br>(plf) | Controlling Shear<br>(plf) | Shear Wall<br>Type | Shear Wall<br>Capacity<br>(plf) | Check | Controlling<br>Shear |
|-----------------|------------------------|---------------------------|------------------------------------|---------------------|---------------------------------|----------------------------|--------------------|---------------------------------|-------|----------------------|
| 1.10            | 97                     | 1.00                      | 106                                | 54                  | 58                              | 106                        | SW-6               | 416                             | ОК    | Seismic              |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
| 5.10            | 261                    | 1.00                      | 284                                | 243                 | 264                             | 284                        | SW-6               | 416                             | ок    | Seismic              |
| 0.10            | 201                    |                           | 201                                | 210                 | 201                             |                            |                    | •                               | •     |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
| 11.10           | 268                    | 1.00                      | 292                                | 225                 | 244                             | 292                        | SW-6               | 416                             | ок    | Seismic              |
| 11.20           | 268                    | 1.00                      | 292                                | 225                 | 244                             | 292                        | SW-6               | 416                             | OK    | Seismic              |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
| 14.10           | 72                     | 1.00                      | 78                                 | 30                  | 33                              | 78                         | SW-6               | 416                             | ок    | Seismic              |
| 14.20           | 72                     | 1.00                      | 78                                 | 30                  | 33                              | 78                         | SW-6               | 416                             | ОК    | Seismic              |
|                 |                        |                           |                                    | _                   |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |

#### Determine Shear Wall Overturning Moment Lever Arm

| SW Segment Mark | Wall Length<br>Lever Arm (ft) | Calculated<br>Lever Arm (ft) | % Different | Override Wall<br>Length | User Input<br>M <sub>OT</sub> Lever<br>Arm (ft) |
|-----------------|-------------------------------|------------------------------|-------------|-------------------------|-------------------------------------------------|
| 1.10            | 23.33                         | 23.12                        | 0.90%       | No                      |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
| 5.10            | 00.50                         | 00.00                        | 4.000/      | N.                      |                                                 |
| 5.10            | 20.50                         | 20.29                        | 1.03%       | No                      |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
| 11.10           | 8.00                          | 7.79                         | 2.67%       | No                      |                                                 |
| 11.20           | 13.67                         | 13.46                        | 1.55%       | No                      |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
| 14.10           | 26.00                         | 25.79                        | 0.81%       | No                      |                                                 |
| 14.10           |                               |                              |             | -                       |                                                 |
| 14.20           | 12.00                         | 11.79                        | 1.77%       | No                      |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 7/29/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 3        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

\*NOTE: CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN SHEAR WALL CAPACITY BETWEEN WIND & EQ

#### Structure: Intrachat Residence

Floor Level: Walls Below Roof Level North South

### Shear Wall End Axial Load (ASD)

| SW Segment Mark | Seismic<br>Tension (Ib) | ASD Seismic<br>Tension<br>Above (Ib) | Seismic<br>Tension<br>Total (Ib) | Wind Tension<br>(Ib) | ASD Wind<br>Tension<br>Above (Ib) | Wind Tension<br>Total (Ib) | End 1 Dead<br>(Ib) | End 2 Dead<br>(Ib) |
|-----------------|-------------------------|--------------------------------------|----------------------------------|----------------------|-----------------------------------|----------------------------|--------------------|--------------------|
| 1.10            | 646                     |                                      | 646                              | 307                  |                                   | 307                        | 3663               | 3663               |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
| 5.10            | 1738                    |                                      | 1738                             | 1385                 |                                   | 1385                       | 4465               | 4465               |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
| 11.10           | 1784                    |                                      | 1784                             | 1281                 |                                   | 1281                       | 1160               | 1160               |
| 11.20           | 1784                    |                                      | 1784                             | 1281                 |                                   | 1281                       | 2256               | 2256               |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
| 14.10           | 476                     |                                      | 476                              | 172                  |                                   | 172                        | 3770               | 3770               |
| 14.20           | 476                     |                                      | 476                              | 172                  |                                   | 172                        | 1740               | 1740               |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |

#### Determine Required Holdown (ASD)

| SW Segment Mark | Wind End 1<br>Eq. 16-15 | EQ End 1<br>Eq. 16-16 | Wind End 2<br>Eq. 16-15 | EQ End 2<br>Eq. 16-16 | Controlling<br>Ten. Load<br>(lb) | Holdown            | Holdown<br>Capacity<br>(Ib) | Status |
|-----------------|-------------------------|-----------------------|-------------------------|-----------------------|----------------------------------|--------------------|-----------------------------|--------|
| 1.10            | 1891                    | 1055                  | 1891                    | 1055                  | 1055                             | No Strap           | 0                           | ок     |
|                 |                         |                       |                         |                       |                                  |                    |                             |        |
|                 |                         |                       |                         |                       |                                  |                    | -                           |        |
|                 |                         |                       |                         |                       |                                  |                    |                             |        |
| 5.10            | 1294                    | 334                   | 1294                    | 334                   | 334                              | No Strap           | 0                           | OK     |
|                 |                         |                       |                         |                       |                                  |                    | _                           |        |
|                 |                         |                       |                         |                       |                                  |                    |                             |        |
|                 |                         |                       |                         |                       |                                  |                    |                             |        |
| 11.10           | -585                    | -1246                 | -585                    | -1246                 | -1246                            | MSTC40 (3070 max.) | -2323                       | ОК     |
| 11.20           | 72                      | -737                  | 72                      | -737                  | -737                             | MSTC40 (3070 max.) | -2323                       | ОК     |
|                 |                         |                       |                         |                       |                                  |                    |                             |        |
|                 |                         |                       |                         |                       |                                  |                    |                             |        |
| 14.10           | 2090                    | 1274                  | 2090                    | 1274                  | 1274                             | No Strap           | 0                           | ок     |
| 14.20           | 872                     | 332                   | 872                     | 332                   | 332                              | No Strap           | 0                           | ОК     |
|                 |                         |                       |                         |                       |                                  |                    |                             |        |
|                 |                         |                       |                         |                       |                                  |                    |                             |        |
|                 |                         |                       |                         |                       |                                  |                    |                             |        |

|    | Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 7/29/22 | Job No: | 22252.01 |
|----|----------------------------------|----------------------------|-------------|---------|---------|----------|
| U, | 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 3        |
|    | Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

#### Structure: Intrachat Residence

Floor Level: Walls Below 2nd Floor North South

Sds =

0.97

17.25

Depth of Floor Framing & Plates (Clearspan) at Interstory (in) =

Shear Wall Line Information

| SW Mark                                                         | τ.                                  | L <sub>sw</sub> (ft)                   | Wall Pier<br>h <sub>wp</sub> (ft) | Aspect<br>Ratio                | Wall Framing<br>Species                   | Specific<br>Gravity G            | Interstory of<br>Base? | h <sub>sw</sub> (ft) | Wall Wt.<br>(psf)              | Roof/Floor<br>Trib. (ft)    | Roof/Floor<br>Wt. (psf) |
|-----------------------------------------------------------------|-------------------------------------|----------------------------------------|-----------------------------------|--------------------------------|-------------------------------------------|----------------------------------|------------------------|----------------------|--------------------------------|-----------------------------|-------------------------|
| SW GRID                                                         | 1                                   | 5.00                                   | -                                 | -                              | -                                         | -                                | -                      | -                    | -                              | -                           | -                       |
| SW Segment                                                      | 1.10                                | 5.00                                   | 9.50                              | 1.90                           | S-P-F #1/#2                               | 0.42                             | Interstory             | 9.50                 | 12.0                           | 4.0                         | 12.0                    |
|                                                                 |                                     |                                        |                                   |                                |                                           |                                  |                        |                      |                                |                             |                         |
| SW GRID                                                         | 5                                   | 11.00                                  | -                                 | -                              | -                                         | -                                | -                      | -                    | -                              | -                           | -                       |
|                                                                 |                                     |                                        |                                   |                                | 0.0.5.114.110                             | 0.42                             | Interstory             | 9.50                 | 12.0                           | 4.0                         | 12.0                    |
| SW Segment                                                      | <sup>5.10</sup><br>calc n           | not used.                              | 9.50<br>See calc                  | o.86<br>c on follo             | S-P-F #1/#2                               |                                  | SW w/ ope              |                      | 12.0                           |                             | 12.0                    |
|                                                                 |                                     |                                        |                                   |                                | + +                                       |                                  | ,                      |                      | -                              | -                           | -                       |
| Grid 5 d                                                        | calc n                              | ot used.                               | See calo                          | on follo                       | + +                                       | ets for                          | ,                      | ening                |                                |                             |                         |
| Grid 5 (                                                        | calc n                              | 14.50                                  | See calo                          | on follo                       | owing she                                 | ets for                          | SW w/ ope              | ening                | -                              |                             | -                       |
| Grid 5 (<br>sw GRID<br>SW Segment                               | 11.10                               | 14.50<br>7.50                          | See calo                          |                                | S-P-F #1/#2                               | ets for<br>                      | SW w/ ope              | ening                | - 12.0                         | -<br>9.0                    | - 12.0                  |
| SW GRID<br>SW Segment<br>SW Segment                             | 11<br>11.10<br>11.20                | 14.50<br>7.50<br>7.00                  | See calo                          | -<br>1.27<br>1.36              | S-P-F #1/#2                               | ets for<br>                      | SW w/ ope              | ening                | - 12.0                         | -<br>9.0                    | - 12.0                  |
| SW GRID<br>SW Segment<br>SW Segment<br>SW GRID                  | 11<br>11.10<br>11.20                | 14.50<br>7.50<br>7.00<br>29.83         | See calo<br>9.50<br>9.50          |                                | S-P-F #1/#2<br>S-P-F #1/#2                | 0.42<br>0.42                     | SW w/ ope              | 9.50<br>9.50<br>9.50 | -<br>12.0<br>12.0              | 9.0<br>9.0<br>9.0           | 12.0<br>12.0            |
| SW GRID<br>SW Segment<br>SW Segment<br>SW Segment<br>SW Segment | 11<br>11.10<br>11.20<br>14<br>14.10 | 14.50<br>7.50<br>7.00<br>29.83<br>8.50 | See calc<br>9.50<br>9.50<br>9.50  | -<br>1.27<br>1.36<br>-<br>1.15 | S-P-F #1/#2<br>S-P-F #1/#2<br>S-P-F #1/#2 | eets for<br>0.42<br>0.42<br>0.42 | SW w/ ope              | 9.50<br>9.50<br>9.50 | -<br>12.0<br>12.0<br>-<br>12.0 | -<br>9.0<br>9.0<br>-<br>9.0 | 12.0<br>12.0<br>12.0    |

#### Shear Wall Loads and Summary

| SW Mark    |       | EQ (lb) Wall<br>(ULT) | Wind (lb) Wall<br>(ULT) | Wall DL (lb) | Wall DL (lb)<br>End 1 | Wall DL (lb)<br>End 2 | Shear Wall Type | MIN. # of<br>End Studs | Holdown                        |
|------------|-------|-----------------------|-------------------------|--------------|-----------------------|-----------------------|-----------------|------------------------|--------------------------------|
| SW GRID    | 1     | 3239                  | 3715                    | -            | -                     | -                     | -               | -                      | -                              |
| SW Segment | 1.10  | 3239                  | 3715                    | 810          | 800                   | 800                   | SW-3            | 2                      | MSTC66B3 (4490DF, 4490HF)      |
|            |       |                       |                         |              |                       |                       |                 |                        |                                |
|            |       |                       |                         |              |                       |                       |                 |                        |                                |
|            |       |                       |                         |              |                       |                       |                 |                        |                                |
| SW GRID    | 5     | 7249                  | 7442                    |              |                       |                       | -               | -                      | -                              |
| SW Segment | 5.10  | 7249                  | 7442                    | 1782         | 700                   | 700                   | SW-3            | 2                      | MSTC66 (5850 max.)             |
|            |       |                       |                         |              |                       |                       |                 |                        |                                |
|            |       |                       |                         |              |                       |                       |                 |                        |                                |
|            |       |                       |                         |              |                       |                       |                 |                        |                                |
| SW GRID    | 11    | 8275                  | 7122                    |              |                       |                       | -               |                        | _                              |
| SW Segment | 11.10 | 4280                  | 3684                    | 1665         | 500                   | 500                   | SW-3            | 2                      | MSTC48B3 (3975DF, 3900HF)      |
| SW Segment | 11.20 | 3995                  | 3438                    | 1554         | 500                   | 500                   | SW-3            | 2                      | HDU5 (5645DF, 4340HF)          |
|            |       |                       |                         |              |                       |                       |                 |                        |                                |
|            |       |                       |                         |              |                       |                       |                 |                        |                                |
| SW GRID    | 14    | 3928                  | 3395                    |              |                       |                       |                 |                        |                                |
|            |       | 3928<br>1119          | 967                     | 1887         | 500                   | 500                   | -<br>SW-6       | - 2                    | -<br>MSTC48B3 (3975DF, 3900HF) |
| SW Segment | 14.10 |                       |                         |              | 500                   | 500                   |                 |                        |                                |
| SW Segment | 14.20 | 988                   | 854                     | 1665         |                       |                       | SW-6            | 2                      | MSTC48B3 (3975DF, 3900HF)      |
| SW Segment | 14.20 | 1053                  | 910                     | 1776         |                       |                       | SW-6            | 2                      | MSTC48B3 (3975DF, 3900HF)      |
| SW Segment | 14.20 | 768                   | 663                     | 1294         |                       |                       | SW-6            | 2                      | MSTC48B3 (3975DF, 3900HF)      |
|            |       |                       |                         |              |                       |                       |                 |                        |                                |

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 7/29/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 1        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

#### Structure: Intrachat Residence

Floor Level: Walls Below 2nd Floor North South

| Shear Wall Type | Sheathing Grade, Sheathing Thickness, & Nail Size | Panel Edge<br>Nail<br>Spacing (in) | Nominal Seismic<br>SW Capacity (plf) | LRFD<br>Seismic SW<br>Capacity<br>(plf) | Nominal<br>Wind SW<br>Capacity<br>(plf) | LRFD Wind<br>SW<br>Capacity<br>(plf) | Sheathing<br>Shear<br>Stiffness, G<br>(Ib/in) |
|-----------------|---------------------------------------------------|------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------|-----------------------------------------------|
| SW-6            | APA Rated, 7/16", 8d Common                       | 6                                  | 520                                  | 416                                     | 730                                     | 584                                  | 10                                            |
| SW-4            | APA Rated, 7/16", 8d Common                       | 4                                  | 760                                  | 608                                     | 1065                                    | 852                                  | 13                                            |
| SW-3            | APA Rated, 7/16", 8d Common                       | 3                                  | 980                                  | 784                                     | 1370                                    | 1096                                 | 15                                            |
| SW-2            | APA Rated, 7/16", 8d Common                       | 2                                  | 1280                                 | 1024                                    | 1790                                    | 1432                                 | 20                                            |
| 2SW-4           | APA Rated, 7/16", 8d Common                       | 4                                  | 1520                                 | 1216                                    | 2130                                    | 1704                                 | 26                                            |
| 2SW-3           | APA Rated, 7/16", 8d Common                       | 3                                  | 1960                                 | 1568                                    | 2740                                    | 2192                                 | 30                                            |
| 2SW-2           | APA Rated, 7/16", 8d Common                       | 2                                  | 2560                                 | 2048                                    | 3580                                    | 2864                                 | 40                                            |

#### Determine Shear Wall Type (LRFD)

| SW Segment Mark | Seismic Shear<br>(plf) | Aspect Ratio<br>Reduction | Adjusted<br>Seismic<br>Shear (plf) | Wind Shear<br>(plf) | Adjusted<br>Wind Shear<br>(plf) | Controlling Shear<br>(plf) | Shear Wall<br>Type | Shear Wall<br>Capacity<br>(plf) | Check | Controlling<br>Shear |
|-----------------|------------------------|---------------------------|------------------------------------|---------------------|---------------------------------|----------------------------|--------------------|---------------------------------|-------|----------------------|
| 1.10            | 648                    | 1.00                      | 704                                | 743                 | 808                             | 704                        | SW-3               | 784                             | ОК    | Seismic              |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
| 5.10            | 659                    | 1.00                      | 716                                | 677                 | 735                             | 716                        | SW-3               | 784                             | ок    | Seismic              |
| 0.10            | 000                    | 1.00                      | 110                                | 011                 | 100                             | 110                        | 0110               | 704                             | OR    | Celonite             |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
| 11.10           | 571                    | 1.00                      | 620                                | 491                 | 534                             | 620                        | SW-3               | 784                             | ок    | Seismic              |
| 11.20           | 571                    | 1.00                      | 620                                | 491                 | 534                             | 620                        | SW-3               | 784                             | ок    | Seismic              |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
| 14.10           | 132                    | 1.00                      | 143                                | 114                 | 124                             | 143                        | SW-6               | 416                             | ОК    | Seismic              |
| 14.20           | 132                    | 1.00                      | 143                                | 114                 | 124                             | 143                        | SW-6               | 416                             | ок    | Seismic              |
| 14.20           | 132                    | 1.00                      | 143                                | 114                 | 124                             | 143                        | SW-6               | 416                             | OK    | Seismic              |
| 14.20           | 132                    | 1.00                      | 143                                | 114                 | 124                             | 143                        | SW-6               | 416                             | ОК    | Seismic              |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |

#### Determine Shear Wall Overturning Moment Lever Arm

| SW Segment Mark | Wall Length<br>Lever Arm (ft) | Calculated<br>Lever Arm (ft) | % Different | Override Wall<br>Length | User Input<br>M <sub>OT</sub> Lever<br>Arm (ft) |
|-----------------|-------------------------------|------------------------------|-------------|-------------------------|-------------------------------------------------|
| 1.10            | 5.00                          | 4.79                         | 4.35%       | No                      |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
| 5.40            | 11.00                         | 10 70                        | 1.000/      |                         |                                                 |
| 5.10            | 11.00                         | 10.79                        | 1.93%       | No                      |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
| 11.10           | 7.50                          | 7.29                         | 2.86%       | No                      |                                                 |
| 11.20           | 7.00                          | 6.52                         | 7.43%       | No                      |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
| 14.10           | 8.50                          | 8.29                         | 2.51%       | No                      |                                                 |
| 14.10           | 7.50                          | 7.29                         | 2.86%       | No                      |                                                 |
| 14.20           | 8.00                          | 7.79                         | 2.67%       | No                      |                                                 |
| 14.20           | 5.83                          | 5.62                         | 3.71%       | No                      |                                                 |
|                 |                               |                              |             |                         |                                                 |

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 7/29/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 3        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

#### \*NOTE: CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN SHEAR WALL CAPACITY BETWEEN WIND & EQ

#### Structure: Intrachat Residence

Floor Level: Walls Below 2nd Floor North South

### Shear Wall End Axial Load (ASD)

| SW Segment Mark | Seismic<br>Tension (Ib) | ASD Seismic<br>Tension<br>Above (Ib) | Seismic<br>Tension<br>Total (Ib) | Wind Tension<br>(lb) | ASD Wind<br>Tension<br>Above (Ib) | Wind Tension<br>Total (Ib) | End 1 Dead<br>(Ib) | End 2 Dead<br>(Ib) |
|-----------------|-------------------------|--------------------------------------|----------------------------------|----------------------|-----------------------------------|----------------------------|--------------------|--------------------|
| 1.10            | 4308                    |                                      | 4308                             | 4235                 |                                   | 4235                       | 1205               | 1205               |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
| 5.10            | 4382                    |                                      | 4382                             | 3856                 |                                   | 3856                       | 1591               | 1591               |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
| 11.10           | 3795                    | 1246                                 | 5041                             | 2800                 | 585                               | 3385                       | 1333               | 1333               |
| 11.20           | 3795                    | 737                                  | 4532                             | 2800                 |                                   | 2800                       | 1277               | 1277               |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
| 14.10           | 876                     |                                      | 876                              | 649                  |                                   | 649                        | 1444               | 1444               |
| 14.20           | 876                     |                                      | 876                              | 649                  |                                   | 649                        | 833                | 833                |
| 14.20           | 876                     |                                      | 876                              | 649                  |                                   | 649                        | 888                | 888                |
| 14.20           | 876                     |                                      | 876                              | 649                  |                                   | 649                        | 647                | 647                |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |

#### Determine Required Holdown (ASD)

| \$ | Status | Holdown<br>Capacity<br>(lb) | Holdown                   | Controlling<br>Ten. Load<br>(lb) | EQ End 2<br>Eq. 16-16 | Wind End 2<br>Eq. 16-15 | EQ End 1<br>Eq. 16-16 | Wind End 1<br>Eq. 16-15 | SW Segment Mark |
|----|--------|-----------------------------|---------------------------|----------------------------------|-----------------------|-------------------------|-----------------------|-------------------------|-----------------|
|    | ОК     | -4490                       | MSTC66B3 (4490DF, 4490HF) | -3748                            | -3748                 | -3512                   | -3748                 | -3512                   | 1.10            |
|    |        |                             |                           |                                  |                       |                         |                       |                         |                 |
|    | ок     | -5499                       | MSTC66 (5850 max.)        | -3644                            | -3644                 | -2901                   | -3644                 | -2901                   | 5.10            |
| _  |        | -0400                       |                           | -3044                            | -5044                 | -2301                   |                       | -2301                   | 5.10            |
|    |        |                             |                           |                                  |                       |                         |                       |                         |                 |
| ,  | ок     | -3900                       | MSTC48B3 (3975DF, 3900HF) | -4422                            | -4422                 | -2585                   | -4422                 | -2585                   | 11.10           |
|    | ОК     | -4340                       | HDU5 (5645DF, 4340HF)     | -3940                            | -3940                 | -2033                   | -3940                 | -2033                   | 11.20           |
|    |        |                             |                           |                                  |                       |                         |                       |                         |                 |
| _  | ок     | -3900                       | MSTC48B3 (3975DF, 3900HF) | -206                             | -206                  | 217                     | -206                  | 217                     | 14.10           |
|    | ок     | -3900                       | MSTC48B3 (3975DF, 3900HF) | -489                             | -489                  | -149                    | -489                  | -149                    | 14.20           |
|    | ок     | -3900                       | MSTC48B3 (3975DF, 3900HF) |                                  | -463                  | -116                    | -463                  | -116                    | 14.20           |
|    | OK     | -3900                       | MSTC48B3 (3975DF, 3900HF) | -575                             | -575                  | -260                    | -575                  | -260                    | 14.20           |

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 7/29/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 3        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

#### Structure: Intrachat Residence

Floor Level: Walls Below 2nd Floor North South

Sds =

0.97

17.25

Depth of Floor Framing & Plates (Clearspan) at Interstory (in) =

Shear Wall Line Information

| SW Mark    | c .  | L <sub>sw</sub> (ft) | Wall Pier<br>h <sub>wp</sub> (ft) | Aspect<br>Ratio | Wall Framing<br>Species | Specific<br>Gravity G | Interstory of<br>Base? | h <sub>sw</sub> (ft) | Wall Wt.<br>(psf) | Roof/Floor<br>Trib. (ft) | Roof/Floor<br>Wt. (psf) |
|------------|------|----------------------|-----------------------------------|-----------------|-------------------------|-----------------------|------------------------|----------------------|-------------------|--------------------------|-------------------------|
|            |      |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
|            |      |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
| SW GRID    | 5_OT | 11.00                | -                                 | -               | -                       | -                     | -                      | -                    | -                 | -                        | -                       |
| SW Segment | 5.10 | 11.00                | 9.50                              | 0.86            | S-P-F #1/#2             | 0.42                  | Interstory             | 9.50                 | 12.0              | 4.0                      | 12.0                    |
|            |      |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
| SW GRID    | 5_V  | 6.67                 | -                                 | -               | -                       | -                     | -                      | -                    | -                 | -                        | -                       |
| SW Segment | 5.10 | 3.08                 | 3.50                              | 1.14            | S-P-F #1/#2             | 0.42                  | Interstory             | 3.50                 | 12.0              | 4.0                      | 12.0                    |
| SW Segment | 5.20 | 3.58                 | 3.50                              | 0.98            | S-P-F #1/#2             | 0.42                  | Interstory             | 3.50                 | 12.0              | 4.0                      | 12.0                    |
|            |      |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
| SW GRID    | 14   | 0.00                 | -                                 | -               | -                       | -                     | -                      | -                    | -                 | -                        | -                       |
|            |      |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
|            |      |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
|            |      |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |

#### Shear Wall Loads and Summary

| SW Mark    |      | EQ (Ib) Wall<br>(ULT) | Wind (lb) Wall<br>(ULT) | Wall DL (lb) | Wall DL (lb)<br>End 1 | Wall DL (Ib)<br>End 2 | Shear Wall Type | MIN. # of<br>End Studs | Holdown            |
|------------|------|-----------------------|-------------------------|--------------|-----------------------|-----------------------|-----------------|------------------------|--------------------|
| SW GRID    |      |                       |                         | -            | -                     | -                     | -               | -                      | -                  |
|            |      |                       |                         |              | 800                   | 800                   |                 |                        |                    |
|            |      |                       |                         |              |                       |                       |                 |                        |                    |
|            |      |                       |                         |              |                       |                       |                 |                        |                    |
|            |      |                       |                         |              |                       |                       |                 |                        |                    |
|            |      |                       |                         |              |                       |                       |                 |                        |                    |
| SW GRID    | 5_OT | 7249                  | 7442                    |              |                       |                       | -               | -                      | -                  |
| SW Segment | 5.10 | 7249                  | 7442                    | 1782         | 700                   | 700                   | SW-3            | 2                      | MSTC66 (5850 max.) |
|            |      |                       |                         |              |                       |                       |                 |                        |                    |
|            |      |                       |                         |              |                       |                       |                 |                        |                    |
|            |      |                       |                         |              |                       |                       |                 |                        |                    |
|            |      |                       |                         |              |                       |                       |                 |                        |                    |
| SW GRID    | 5_V  | 7249                  | 7442                    |              |                       |                       | -               | -                      | -                  |
| SW Segment | 5.10 | 3353                  | 3442                    | 277          | 500                   | 500                   | 2SW-4           | 2                      | No Strap           |
| SW Segment | 5.20 | 3896                  | 4000                    | 322          | 500                   | 500                   | 2SW-4           | 2                      | No Strap           |
|            |      |                       |                         |              |                       |                       |                 |                        |                    |
|            |      |                       |                         |              |                       |                       |                 |                        |                    |
|            |      |                       |                         |              |                       |                       |                 |                        |                    |
| SW GRID    | 14   |                       |                         |              |                       |                       | -               | -                      | -                  |
|            |      |                       |                         |              |                       |                       |                 |                        |                    |
|            |      |                       |                         |              |                       |                       |                 |                        |                    |
|            |      |                       |                         |              |                       | ļ                     |                 |                        |                    |
|            |      |                       |                         |              |                       |                       |                 |                        |                    |
|            |      |                       |                         |              |                       |                       |                 |                        |                    |

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 8/16/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 1        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

#### Structure: Intrachat Residence

Floor Level: Walls Below 2nd Floor North South

| Shear Wall Schedule (LF | RFD)                                              |                                    |                                      | φ <sub>D</sub> =                        | 0.8                                     |                                      |                                               |
|-------------------------|---------------------------------------------------|------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------|-----------------------------------------------|
| Shear Wall Type         | Sheathing Grade, Sheathing Thickness, & Nail Size | Panel Edge<br>Nail<br>Spacing (in) | Nominal Seismic<br>SW Capacity (plf) | LRFD<br>Seismic SW<br>Capacity<br>(plf) | Nominal<br>Wind SW<br>Capacity<br>(plf) | LRFD Wind<br>SW<br>Capacity<br>(plf) | Sheathing<br>Shear<br>Stiffness, G<br>(Ib/in) |
| SW-6                    | APA Rated, 7/16", 8d Common                       | 6                                  | 520                                  | 416                                     | 730                                     | 584                                  | 10                                            |
| SW-4                    | APA Rated, 7/16", 8d Common                       | 4                                  | 760                                  | 608                                     | 1065                                    | 852                                  | 13                                            |
| SW-3                    | APA Rated, 7/16", 8d Common                       | 3                                  | 980                                  | 784                                     | 1370                                    | 1096                                 | 15                                            |
| SW-2                    | APA Rated, 7/16", 8d Common                       | 2                                  | 1280                                 | 1024                                    | 1790                                    | 1432                                 | 20                                            |
| 2SW-4                   | APA Rated, 7/16", 8d Common                       | 4                                  | 1520                                 | 1216                                    | 2130                                    | 1704                                 | 26                                            |
| 2SW-3                   | APA Rated, 7/16", 8d Common                       | 3                                  | 1960                                 | 1568                                    | 2740                                    | 2192                                 | 30                                            |
| 2SW-2                   | APA Rated, 7/16", 8d Common                       | 2                                  | 2560                                 | 2048                                    | 3580                                    | 2864                                 | 40                                            |
|                         | **See SDPWS Table 4.3A Note 2                     |                                    |                                      |                                         |                                         |                                      |                                               |

#### Determine Shear Wall Type (LRFD)

| SW Segment Mark | Seismic Shear<br>(plf) | Aspect Ratio<br>Reduction | Adjusted<br>Seismic<br>Shear (plf) | Wind Shear<br>(plf) | Adjusted<br>Wind Shear<br>(plf) | Controlling Shear<br>(plf) | Shear Wall<br>Type | Shear Wall<br>Capacity<br>(plf) | Check | Controlling<br>Shear |
|-----------------|------------------------|---------------------------|------------------------------------|---------------------|---------------------------------|----------------------------|--------------------|---------------------------------|-------|----------------------|
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
| 5.10            | 659                    | 1.00                      | 716                                | 677                 | 735                             | 716                        | SW-3               | 784                             | ок    | Seismic              |
| 0.10            | 000                    | 1.00                      | 710                                | 011                 | 100                             | 110                        | 0110               | 104                             | UN    | Celonie              |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
| 5.10            | 1087                   | 1.00                      | 1182                               | 1116                | 1213                            | 1182                       | 2SW-4              | 1216                            | ок    | Seismic              |
| 5.20            | 1087                   | 1.00                      | 1182                               | 1116                | 1213                            | 1182                       | 2SW-4              | 1216                            | ок    | Seismic              |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 | -                      |                           |                                    | -                   |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |

#### Determine Shear Wall Overturning Moment Lever Arm

| SW Segment Mark | Wall Length<br>Lever Arm (ft) | Calculated<br>Lever Arm (ft) | % Different | Override Wall<br>Length | User Input<br>M <sub>OT</sub> Lever<br>Arm (ft) |
|-----------------|-------------------------------|------------------------------|-------------|-------------------------|-------------------------------------------------|
|                 | 0.00                          | -0.21                        | 100.00%     | No                      |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
| 5.10            | 11.00                         | 10.79                        | 1.93%       | No                      |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
| 5.10            | 3.08                          | 2.87                         | 7.25%       | No                      |                                                 |
| 5.20            | 3.58                          | 3.37                         | 6.17%       | No                      |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 8/16/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 3        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

\*NOTE: CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN

SHEAR WALL CAPACITY BETWEEN WIND & EQ

## LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN

Per IBC 2018, ASCE 7-16, SDPWS 2015 & NDS 2018

#### Structure: Intrachat Residence

Floor Level: Walls Below 2nd Floor North South

#### Shear Wall End Axial Load (ASD)

|      |                      |                  |                       | Above (lb)                 | Total (Ib)                            | (lb)                                       | (lb)                                           |
|------|----------------------|------------------|-----------------------|----------------------------|---------------------------------------|--------------------------------------------|------------------------------------------------|
|      |                      |                  |                       |                            |                                       |                                            |                                                |
|      |                      |                  |                       |                            |                                       |                                            |                                                |
|      |                      |                  |                       |                            |                                       |                                            |                                                |
|      |                      |                  |                       |                            |                                       |                                            |                                                |
|      |                      |                  |                       |                            |                                       |                                            |                                                |
| 4382 |                      | 4382             | 3856                  |                            | 3856                                  | 1591                                       | 1591                                           |
|      |                      |                  |                       |                            |                                       |                                            |                                                |
|      |                      |                  |                       |                            |                                       |                                            |                                                |
|      |                      |                  |                       |                            |                                       |                                            |                                                |
| 2664 | 1246                 | 3910             | 2344                  | 585                        | 2930                                  | 639                                        | 639                                            |
| 2664 | 737                  | 3401             | 2344                  |                            | 2344                                  | 661                                        | 661                                            |
|      |                      |                  |                       |                            |                                       |                                            |                                                |
|      |                      |                  |                       |                            |                                       |                                            |                                                |
|      |                      |                  |                       |                            |                                       |                                            |                                                |
|      |                      |                  |                       |                            |                                       |                                            |                                                |
|      |                      |                  |                       |                            |                                       |                                            |                                                |
|      |                      |                  |                       |                            |                                       |                                            |                                                |
|      |                      |                  |                       |                            |                                       |                                            |                                                |
|      |                      |                  |                       |                            |                                       |                                            |                                                |
|      | 4382<br>2664<br>2664 | 2664 <b>1246</b> | 2664 <b>1246</b> 3910 | 2664 <b>1246</b> 3910 2344 | 2664 <b>1246</b> 3910 2344 <b>585</b> | 2664 <b>1246</b> 3910 2344 <b>585</b> 2930 | 2664 <b>1246</b> 3910 2344 <b>585</b> 2930 639 |

#### Determine Required Holdown (ASD)

| SW Segment Mark | Wind End 1<br>Eq. 16-15 | EQ End 1<br>Eq. 16-16 | Wind End 2<br>Eq. 16-15 | EQ End 2<br>Eq. 16-16 | Controlling<br>Ten. Load<br>(lb) | Holdown                   | Holdown<br>Capacity<br>(lb) | Status   |
|-----------------|-------------------------|-----------------------|-------------------------|-----------------------|----------------------------------|---------------------------|-----------------------------|----------|
|                 |                         |                       |                         |                       |                                  | MSTC66B3 (4490DF, 4490HF) |                             |          |
|                 |                         |                       |                         |                       |                                  |                           |                             |          |
|                 |                         |                       |                         |                       |                                  |                           |                             |          |
|                 |                         |                       |                         |                       |                                  |                           |                             |          |
| 5.10            | -2901                   | -3644                 | -2901                   | -3644                 | -3644                            | MSTC66 (5850 max.)        | -5499                       | ОК       |
|                 |                         |                       |                         |                       |                                  |                           |                             |          |
|                 |                         |                       |                         |                       |                                  |                           |                             |          |
| 5.10            | -2546                   | -3613                 | -2546                   | -3613                 | -3613                            | No Strap                  | 0                           | ***NG*** |
| 5.20            | -1948                   | -3094                 | -1948                   | -3094                 | -3094                            | No Strap                  | 0                           | ***NG*** |
|                 |                         |                       |                         |                       |                                  |                           |                             |          |
|                 |                         |                       |                         |                       |                                  |                           |                             |          |
|                 |                         |                       |                         |                       |                                  | MSTC48B3 (3975DF, 3900HF) |                             |          |
|                 |                         |                       |                         |                       |                                  | MSTC48B3 (3975DF, 3900HF) |                             |          |
|                 |                         |                       |                         |                       |                                  | MSTC48B3 (3975DF, 3900HF) |                             |          |
|                 |                         |                       |                         |                       |                                  | MSTC48B3 (3975DF, 3900HF) |                             |          |
|                 | 1                       |                       |                         |                       | 1                                |                           |                             |          |

# OK, see calc below

Force transfers to panel above opening L = 9.5'-3.5' L = 6' P = 6' (1520 plf / 2)P = 4560 lb > 3613 lb OK

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 8/16/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 3        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

#### Structure: Intrachat Residence

Floor Level: Walls Below 1st Floor North South

Sds = 17.25

0.97

Depth of Floor Framing & Plates (Clearspan) at Interstory (in) =

Shear Wall Line Information

| SW Mark    | ζ.    | L <sub>sw</sub> (ft) | Wall Pier<br>h <sub>wp</sub> (ft) | Aspect<br>Ratio | Wall Framing<br>Species | Specific<br>Gravity G | Interstory of<br>Base? | h <sub>sw</sub> (ft) | Wall Wt.<br>(psf) | Roof/Floor<br>Trib. (ft) | Roof/Floor<br>Wt. (psf) |
|------------|-------|----------------------|-----------------------------------|-----------------|-------------------------|-----------------------|------------------------|----------------------|-------------------|--------------------------|-------------------------|
| SW GRID    | 1     | 28.50                | -                                 | -               | -                       | -                     | -                      | -                    | -                 | -                        | •                       |
| SW Segment | 1.10  | 18.00                | 8.17                              | 0.45            | S-P-F #1/#2             | 0.42                  | Base                   | 8.17                 | 12.0              | 4.0                      | 15.0                    |
| SW Segment | 1.20  | 10.50                | 8.17                              | 0.78            | S-P-F #1/#2             | 0.42                  | Base                   | 8.17                 | 12.0              | 4.0                      | 15.0                    |
|            |       |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
| SW GRID    | 5     | 10.50                | -                                 | -               | -                       | -                     | -                      | -                    | -                 | -                        | -                       |
| SW Segment | 5.10  | 10.50                | 8.17                              | 0.78            | S-P-F #1/#2             | 0.42                  | Base                   | 8.17                 | 12.0              | 9.0                      | 12.0                    |
|            |       |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
| SW GRID    | 11    | 21.00                | -                                 | -               | -                       | -                     | -                      |                      | -                 | -                        | -                       |
| SW Segment | 11.10 | 10.50                | 8.17                              | 0.78            | S-P-F #1/#2             | 0.42                  | Base                   | 8.17                 | 12.0              | 12.0                     | 12.0                    |
| SW Segment | 11.20 | 10.50                | 8.17                              | 0.78            | S-P-F #1/#2             | 0.42                  | Base                   | 8.17                 | 12.0              | 11.0                     | 12.0                    |
|            |       |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
| SW GRID    | 14    | 16.50                | -                                 | -               | -                       | -                     | -                      |                      | -                 | -                        | -                       |
| SW Segment | 14.10 | 3.50                 | 8.17                              | 2.33            | S-P-F #1/#2             | 0.42                  | Base                   | 8.17                 | 12.0              | 9.0                      | 5.5                     |
| SW Segment | 14.20 | 13.00                | 8.17                              | 0.63            | S-P-F #1/#2             | 0.42                  | Base                   | 8.17                 | 12.0              | 9.0                      | 5.5                     |
|            |       |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |

#### Shear Wall Loads and Summary

| SW Mark    |       | EQ (Ib) Wall<br>(ULT) | Wind (lb) Wall<br>(ULT) | Wall DL (lb) | Wall DL (lb)<br>End 1 | Wall DL (lb)<br>End 2 | Shear Wall Type | MIN. # of<br>End Studs | Holdown               |
|------------|-------|-----------------------|-------------------------|--------------|-----------------------|-----------------------|-----------------|------------------------|-----------------------|
| SW GRID    | 1     | 3679                  | 3715                    | -            | -                     | -                     | -               | -                      | -                     |
| SW Segment | 1.10  | 2323                  | 2346                    | 2845         | 500                   | 500                   | SW-6            | 2                      | No HD                 |
| SW Segment | 1.20  | 1355                  | 1369                    | 1659         | 500                   | 500                   | SW-6            | 2                      | HDU2 (3075DF,2215HF)  |
|            |       |                       |                         |              |                       |                       |                 |                        |                       |
| SW GRID    | 5     | 8511                  | 7442                    |              |                       |                       | -               | -                      | -                     |
| SW Segment | 5.10  | 8511                  | 7442                    | 2163         | 1000                  | 1000                  | SW-2            | 2                      | HDU5 (5645DF, 4340HF) |
|            |       |                       |                         |              |                       |                       |                 |                        |                       |
|            |       |                       |                         |              |                       |                       |                 |                        |                       |
| SW GRID    | 11    | 9761                  | 7122                    |              |                       |                       | -               | -                      |                       |
| SW Segment | 11.10 | 4881                  | 3561                    | 2541         | 500                   | 500                   | SW-2            | 2                      | HDU2 (3075DF,2215HF)  |
| SW Segment | 11.20 | 4881                  | 3561                    | 2415         | 500                   | 500                   | SW-2            | 2                      | HDU2 (3075DF,2215HF)  |
|            |       |                       |                         |              |                       |                       |                 |                        |                       |
| SW GRID    | 14    | 4470                  | 3395                    |              |                       |                       | -               | -                      | -                     |
| SW Segment | 14.10 | 948                   | 720                     | 516          | 500                   | 500                   | SW-6            | 2                      | HDU2 (3075DF,2215HF)  |
| SW Segment | 14.20 | 3522                  | 2675                    | 1918         | 500                   | 500                   | SW-6            | 2                      | HDU2 (3075DF,2215HF)  |
|            |       |                       |                         |              |                       |                       |                 |                        |                       |
|            |       |                       |                         |              |                       |                       |                 |                        |                       |

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 7/29/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 1        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

#### Structure: Intrachat Residence

Floor Level: Walls Below 1st Floor North South

| hear Wall Schedule (Li | RFD)                                              |                                    |                                      | φ <sub>D</sub> =                        | 0.8                                     |                                      |                                               |
|------------------------|---------------------------------------------------|------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------|-----------------------------------------------|
| Shear Wall Type        | Sheathing Grade, Sheathing Thickness, & Nail Size | Panel Edge<br>Nail<br>Spacing (in) | Nominal Seismic<br>SW Capacity (plf) | LRFD<br>Seismic SW<br>Capacity<br>(plf) | Nominal<br>Wind SW<br>Capacity<br>(plf) | LRFD Wind<br>SW<br>Capacity<br>(plf) | Sheathing<br>Shear<br>Stiffness, G<br>(Ib/in) |
| SW-6                   | APA Rated, 7/16", 8d Common                       | 6                                  | 520                                  | 416                                     | 730                                     | 584                                  | 10                                            |
| SW-4                   | APA Rated, 7/16", 8d Common                       | 4                                  | 760                                  | 608                                     | 1065                                    | 852                                  | 13                                            |
| SW-3                   | APA Rated, 7/16", 8d Common                       | 3                                  | 980                                  | 784                                     | 1370                                    | 1096                                 | 15                                            |
| SW-2                   | APA Rated, 7/16", 8d Common                       | 2                                  | 1280                                 | 1024                                    | 1790                                    | 1432                                 | 20                                            |
| 2SW-4                  | APA Rated, 7/16", 8d Common                       | 4                                  | 1520                                 | 1216                                    | 2130                                    | 1704                                 | 26                                            |
| 2SW-3                  | APA Rated, 7/16", 8d Common                       | 3                                  | 1960                                 | 1568                                    | 2740                                    | 2192                                 | 30                                            |
| 2SW-2                  | APA Rated, 7/16", 8d Common                       | 2                                  | 2560                                 | 2048                                    | 3580                                    | 2864                                 | 40                                            |
|                        | **See SDPWS Table 4.3A Note 2                     | •                                  | •                                    |                                         |                                         |                                      |                                               |

### Determine Shear Wall Type (LRFD)

| SW Segment Mark | Seismic Shear<br>(plf) | Aspect Ratio<br>Reduction | Adjusted<br>Seismic<br>Shear (plf) | Wind Shear<br>(plf) | Adjusted<br>Wind Shear<br>(plf) | Controlling Shear<br>(plf) | Shear Wall<br>Type | Shear Wall<br>Capacity<br>(plf) | Check | Controlling<br>Shear |
|-----------------|------------------------|---------------------------|------------------------------------|---------------------|---------------------------------|----------------------------|--------------------|---------------------------------|-------|----------------------|
| 1.10            | 129                    | 1.00                      | 140                                | 130                 | 142                             | 140                        | SW-6               | 416                             | ОК    | Seismic              |
| 1.20            | 129                    | 1.00                      | 140                                | 130                 | 142                             | 140                        | SW-6               | 416                             | ОК    | Seismic              |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
| E 40            | 011                    | 1.00                      | 881                                | 700                 | 770                             | 004                        | CW/ 2              | 1024                            | 01    | Colomia              |
| 5.10            | 811                    | 1.00                      | 001                                | 709                 | 770                             | 881                        | SW-2               | 1024                            | ок    | Seismic              |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
| 11.10           | 465                    | 1.00                      | 505                                | 339                 | 369                             | 505                        | SW-2               | 1024                            | OK    | Seismic              |
| 11.20           | 465                    | 1.00                      | 505                                | 339                 | 369                             | 505                        | SW-2               | 1024                            | OK    | Seismic              |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
| 14.10           | 074                    | 0.00                      | 307                                | 206                 | 000                             | 307                        | SW-6               | 44.0                            | ок    | Colomia              |
|                 | 271                    | 0.96                      |                                    | 206                 | 233                             |                            |                    | 416                             | -     | Seismic              |
| 14.20           | 271                    | 1.00                      | 294                                | 206                 | 224                             | 294                        | SW-6               | 416                             | OK    | Seismic              |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
| L               |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |

#### Determine Shear Wall Overturning Moment Lever Arm

| SW Segment Mark | Wall Length<br>Lever Arm (ft) | Calculated<br>Lever Arm (ft) | % Different | Override Wall<br>Length | User Input<br>M <sub>OT</sub> Lever<br>Arm (ft) |
|-----------------|-------------------------------|------------------------------|-------------|-------------------------|-------------------------------------------------|
| 1.10            | 18.00                         | 17.63                        | 2.13%       | No                      |                                                 |
| 1.20            | 10.50                         | 10.02                        | 4.84%       | No                      |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
| 5.10            | 10.50                         | 10.02                        | 4.84%       | No                      |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
| 11.10           | 10.50                         | 10.02                        | 4.84%       | No                      |                                                 |
| 11.20           | 10.50                         | 10.02                        | 4.84%       | No                      |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
| 14.10           | 3.50                          | 3.02                         | 16.06%      | No                      |                                                 |
| 14.20           | 13.00                         | 12.52                        | 3.87%       | No                      |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 7/29/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 3        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

\*NOTE: CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN SHEAR WALL CAPACITY BETWEEN WIND & EQ

#### Structure: Intrachat Residence

Floor Level: Walls Below 1st Floor North South

### Shear Wall End Axial Load (ASD)

| SW Segment Mark | Seismic<br>Tension (Ib) | ASD Seismic<br>Tension<br>Above (Ib) | Seismic<br>Tension<br>Total (Ib) | Wind Tension<br>(Ib) | ASD Wind<br>Tension<br>Above (Ib) | Wind Tension<br>Total (Ib) | End 1 Dead<br>(Ib) | End 2 Dead<br>(Ib) |
|-----------------|-------------------------|--------------------------------------|----------------------------------|----------------------|-----------------------------------|----------------------------|--------------------|--------------------|
| 1.10            | 738                     |                                      | 738                              | 639                  |                                   | 639                        | 1922               | 1922               |
| 1.20            | 738                     |                                      | 738                              | 639                  |                                   | 639                        | 1330               | 1330               |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
| 5.10            | 4636                    |                                      | 4636                             | 3474                 |                                   | 3474                       | 2082               | 2082               |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
| 11.10           | 0050                    |                                      | 2659                             | 4660                 |                                   | 1662                       | 4774               | 1771               |
| 11.20           | 2658<br>2658            |                                      | 2658<br>2658                     | 1662<br>1662         |                                   | 1662                       | 1771<br>1708       | 1708               |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
| 14.10           | 1549                    |                                      | 1549                             | 1009                 |                                   | 1009                       | 758                | 758                |
| 14.20           | 1549                    |                                      | 1549                             | 1009                 |                                   | 1009                       | 1459               | 1459               |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |

#### Determine Required Holdown (ASD)

| Status | Holdown<br>Capacity<br>(lb) | Holdown               | Controlling<br>Ten. Load<br>(lb) | EQ End 2<br>Eq. 16-16 | Wind End 2<br>Eq. 16-15 | EQ End 1<br>Eq. 16-16 | Wind End 1<br>Eq. 16-15 | SW Segment Mark |
|--------|-----------------------------|-----------------------|----------------------------------|-----------------------|-------------------------|-----------------------|-------------------------|-----------------|
| OK     | 0                           | No HD                 | 154                              | 154                   | 515                     | 154                   | 515                     | 1.10            |
| ОК     | -2215                       | HDU2 (3075DF,2215HF)  | -121                             | -121                  | 159                     | -121                  | 159                     | 1.20            |
|        |                             |                       |                                  |                       |                         |                       |                         |                 |
| ок     | -4340                       | HDU5 (5645DF, 4340HF) | -3669                            | -3669                 | -2225                   | -3669                 | -2225                   | 5.10            |
|        |                             |                       |                                  |                       |                         |                       |                         |                 |
| ОК     | -2215                       | HDU2 (3075DF,2215HF)  | -1836                            | -1836                 | -600                    | -1836                 | -600                    | 11.10           |
| ок     | -2215                       | HDU2 (3075DF,2215HF)  | -1866                            | -1866                 | -638                    | -1866                 | -638                    | 11.20           |
|        |                             |                       |                                  |                       |                         |                       |                         |                 |
| ОК     | -2215                       | HDU2 (3075DF,2215HF)  | -1197                            | -1197                 | -554                    | -1197                 | -554                    | 14.10           |
| ОК     | -2215                       | HDU2 (3075DF,2215HF)  | -872                             | -872                  | -133                    | -872                  | -133                    | 14.20           |
|        |                             |                       |                                  |                       |                         |                       |                         |                 |
|        | -                           |                       |                                  |                       |                         | -                     |                         |                 |

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 7/29/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 3        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

Structure: Intrachat Residence

Floor Level: Walls Below 1st Floor North South

Sds =

0.97

17.25

Depth of Floor Framing & Plates (Clearspan) at Interstory (in) =

Shear Wall Line Information

| SW Mark    | ĸ    | L <sub>sw</sub> (ft) | Wall Pier<br>h <sub>wp</sub> (ft) | Aspect<br>Ratio | Wall Framing<br>Species | Specific<br>Gravity G | Interstory of<br>Base? | h <sub>sw</sub> (ft) | Wall Wt.<br>(psf) | Roof/Floor<br>Trib. (ft) | Roof/Floor<br>Wt. (psf) |
|------------|------|----------------------|-----------------------------------|-----------------|-------------------------|-----------------------|------------------------|----------------------|-------------------|--------------------------|-------------------------|
| SW GRID    | 8    | 6.17                 | -                                 | -               | -                       | -                     | -                      | -                    | -                 | -                        | -                       |
| SW Segment | 8.10 | 6.17                 | 8.00                              | 1.30            | S-P-F #1/#2             | 0.42                  | Base                   | 8.00                 | 12.0              | 4.0                      | 15.0                    |
|            |      |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
| SW GRID    |      | 0.00                 | -                                 | -               |                         | -                     | -                      | -                    | -                 | -                        | -                       |
|            |      |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
|            |      |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
| SW GRID    |      | 0.00                 | -                                 | -               | -                       | -                     | -                      |                      | -                 | -                        | -                       |
|            |      |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
|            |      |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
|            |      |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
| SW GRID    |      | 0.00                 | -                                 | -               | -                       | -                     | -                      |                      | -                 | -                        | -                       |
|            |      |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
|            |      |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
|            |      |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |

#### Shear Wall Loads and Summary

| SW Mark    |      | EQ (Ib) Wall<br>(ULT) | Wind (lb) Wall<br>(ULT) | Wall DL (lb) | Wall DL (lb)<br>End 1 | Wall DL (lb)<br>End 2 | Shear Wall Type | MIN. # of<br>End Studs | Holdown              |
|------------|------|-----------------------|-------------------------|--------------|-----------------------|-----------------------|-----------------|------------------------|----------------------|
| SW GRID    | 8    | 624                   |                         | -            | -                     | -                     | -               | -                      | -                    |
| SW Segment | 8.10 | 624                   | 0                       | 963          |                       |                       | SW-6            | 2                      | HDU2 (3075DF,2215HF) |
|            |      |                       |                         |              |                       |                       |                 |                        |                      |
|            |      |                       |                         |              |                       |                       |                 |                        |                      |
|            |      |                       |                         |              |                       |                       |                 |                        |                      |
|            |      |                       |                         |              |                       |                       |                 |                        |                      |
| SW GRID    |      |                       |                         |              |                       |                       | -               | -                      | -                    |
|            |      |                       |                         |              |                       |                       |                 |                        |                      |
|            |      |                       |                         |              |                       |                       |                 |                        |                      |
| -          |      |                       |                         |              |                       |                       |                 |                        |                      |
|            |      |                       |                         |              |                       |                       |                 |                        |                      |
| SW GRID    |      |                       |                         |              |                       |                       | -               | -                      |                      |
| SW GRID    |      |                       |                         |              |                       |                       | -               | -                      | -                    |
|            |      |                       |                         |              |                       |                       |                 |                        |                      |
|            |      |                       |                         |              |                       |                       |                 |                        |                      |
|            |      |                       |                         |              |                       |                       |                 |                        |                      |
|            |      |                       |                         |              |                       |                       |                 |                        |                      |
| SW GRID    |      |                       |                         |              |                       |                       | -               | -                      | -                    |
|            |      |                       |                         |              |                       |                       |                 |                        |                      |
|            |      |                       |                         |              |                       |                       |                 |                        |                      |
|            |      |                       |                         |              |                       |                       |                 |                        |                      |
|            |      |                       |                         |              |                       |                       |                 |                        |                      |
|            |      |                       |                         |              |                       |                       |                 |                        |                      |

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 7/29/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 1        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

#### Structure: Intrachat Residence

Floor Level: Walls Below 1st Floor North South

| Shear Wall Schedule (LF | RFD)                                              |                                    |                                      | φ <sub>D</sub> =                        | 0.8                                     |                                      |                                               |
|-------------------------|---------------------------------------------------|------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------|-----------------------------------------------|
| Shear Wall Type         | Sheathing Grade, Sheathing Thickness, & Nail Size | Panel Edge<br>Nail<br>Spacing (in) | Nominal Seismic<br>SW Capacity (plf) | LRFD<br>Seismic SW<br>Capacity<br>(plf) | Nominal<br>Wind SW<br>Capacity<br>(plf) | LRFD Wind<br>SW<br>Capacity<br>(plf) | Sheathing<br>Shear<br>Stiffness, G<br>(Ib/in) |
| SW-6                    | APA Rated, 7/16", 8d Common                       | 6                                  | 520                                  | 416                                     | 730                                     | 584                                  | 10                                            |
| SW-4                    | APA Rated, 7/16", 8d Common                       | 4                                  | 760                                  | 608                                     | 1065                                    | 852                                  | 13                                            |
| SW-3                    | APA Rated, 7/16", 8d Common                       | 3                                  | 980                                  | 784                                     | 1370                                    | 1096                                 | 15                                            |
| SW-2                    | APA Rated, 7/16", 8d Common                       | 2                                  | 1280                                 | 1024                                    | 1790                                    | 1432                                 | 20                                            |
| 2SW-4                   | APA Rated, 7/16", 8d Common                       | 4                                  | 1520                                 | 1216                                    | 2130                                    | 1704                                 | 26                                            |
| 2SW-3                   | APA Rated, 7/16", 8d Common                       | 3                                  | 1960                                 | 1568                                    | 2740                                    | 2192                                 | 30                                            |
| 2SW-2                   | APA Rated, 7/16", 8d Common                       | 2                                  | 2560                                 | 2048                                    | 3580                                    | 2864                                 | 40                                            |
|                         | **See SDPWS Table 4.3A Note 2                     |                                    | •                                    |                                         |                                         |                                      |                                               |

### Determine Shear Wall Type (LRFD)

| SW Segment Mark | Seismic Shear<br>(plf) | Aspect Ratio<br>Reduction | Adjusted<br>Seismic<br>Shear (plf) | Wind Shear<br>(plf) | Adjusted<br>Wind Shear<br>(plf) | Controlling Shear<br>(plf) | Shear Wall<br>Type | Shear Wall<br>Capacity<br>(plf) | Check | Controlling<br>Shear |
|-----------------|------------------------|---------------------------|------------------------------------|---------------------|---------------------------------|----------------------------|--------------------|---------------------------------|-------|----------------------|
| 8.10            | 101                    | 1.00                      | 110                                | 0                   | 0                               | 110                        | SW-6               | 416                             | ОК    | Seismic              |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |

#### Determine Shear Wall Overturning Moment Lever Arm

| SW Segment Mark | Wall Length<br>Lever Arm (ft) | Calculated<br>Lever Arm (ft) | % Different | Override Wall<br>Length | User Input<br>M <sub>oT</sub> Lever<br>Arm (ft) |
|-----------------|-------------------------------|------------------------------|-------------|-------------------------|-------------------------------------------------|
| 8.10            | 6.17                          | 5.69                         | 8.52%       | No                      |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 7/29/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 3        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

\*NOTE: CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN SHEAR WALL CAPACITY BETWEEN WIND & EQ

#### Structure: Intrachat Residence

Floor Level: Walls Below 1st Floor North South

### Shear Wall End Axial Load (ASD)

| SW Segment Mark | Seismic<br>Tension (Ib) | ASD Seismic<br>Tension<br>Above (Ib) | Seismic<br>Tension<br>Total (Ib) | Wind Tension<br>(Ib) | ASD Wind<br>Tension<br>Above (Ib) | Wind Tension<br>Total (Ib) | End 1 Dead<br>(Ib) | End 2 Dead<br>(lb) |
|-----------------|-------------------------|--------------------------------------|----------------------------------|----------------------|-----------------------------------|----------------------------|--------------------|--------------------|
| 8.10            | 567                     |                                      | 567                              | 0                    |                                   | 0                          | 481                | 481                |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |

#### Determine Required Holdown (ASD)

| SW Segment Mark | Wind End 1<br>Eq. 16-15 | EQ End 1<br>Eq. 16-16 | Wind End 2<br>Eq. 16-15 | EQ End 2<br>Eq. 16-16 | Controlling<br>Ten. Load<br>(lb) | Holdown              | Holdown<br>Capacity<br>(lb) | Status |    |
|-----------------|-------------------------|-----------------------|-------------------------|-----------------------|----------------------------------|----------------------|-----------------------------|--------|----|
| 8.10            | 289                     | -343                  | 289                     | -343                  | -343                             | HDU2 (3075DF,2215HF) | -2215                       | ОК     |    |
|                 |                         |                       |                         |                       |                                  |                      |                             |        |    |
|                 |                         |                       |                         |                       |                                  |                      |                             |        |    |
|                 |                         |                       |                         |                       |                                  |                      |                             |        |    |
|                 |                         |                       |                         |                       | -                                |                      |                             |        |    |
|                 |                         |                       |                         |                       |                                  |                      |                             |        |    |
|                 |                         |                       |                         |                       |                                  |                      |                             |        |    |
|                 |                         |                       |                         |                       |                                  |                      |                             |        |    |
|                 |                         |                       |                         |                       |                                  |                      |                             | ×      | x2 |
|                 |                         |                       |                         |                       |                                  |                      |                             |        |    |
|                 |                         |                       |                         |                       |                                  |                      |                             |        |    |
|                 |                         |                       |                         |                       |                                  |                      |                             |        |    |
|                 |                         |                       |                         |                       |                                  |                      |                             |        |    |
|                 |                         |                       |                         |                       |                                  |                      |                             |        |    |
| -               |                         |                       |                         |                       |                                  |                      |                             |        |    |
|                 |                         |                       |                         |                       |                                  |                      |                             |        |    |

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 7/29/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 3        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

Structure: Intrachat Residence

Floor Level: Walls Below Roof Level East West

Sds =

0.97

17.25

Depth of Floor Framing & Plates (Clearspan) at Interstory (in) =

Shear Wall Line Information

| SW Mark    |     | L <sub>sw</sub> (ft) | Wall Pier<br>h <sub>wp</sub> (ft) | Aspect<br>Ratio | Wall Framing<br>Species | Specific<br>Gravity G | Interstory of<br>Base? | h <sub>sw</sub> (ft) | Wall Wt.<br>(psf) | Roof/Floor<br>Trib. (ft) | Roof/Floor<br>Wt. (psf) |
|------------|-----|----------------------|-----------------------------------|-----------------|-------------------------|-----------------------|------------------------|----------------------|-------------------|--------------------------|-------------------------|
| SW GRID    | С   | 35.50                | -                                 | -               | -                       | -                     | -                      | -                    | -                 | -                        | -                       |
| SW Segment | C.1 | 19.33                | 9.50                              | 0.49            | S-P-F #1/#2             | 0.42                  | Interstory             | 9.50                 | 12.0              | 6.0                      | 16.0                    |
| SW Segment | C.2 | 16.17                | 9.50                              | 0.59            | S-P-F #1/#2             | 0.42                  | Interstory             | 9.00                 | 12.0              | 6.0                      | 16.0                    |
| SW GRID    |     | 0.00                 | -                                 | -               | -                       | -                     | -                      | -                    | -                 | -                        | -                       |
|            |     |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
| SW GRID    | I   | 11.75                | -                                 | -               | -                       | -                     | -                      | -                    | -                 | -                        | -                       |
| SW Segment | l.1 | 11.75                | 9.50                              | 0.81            | S-P-F #1/#2             | 0.42                  | Interstory             | 9.50                 | 12.0              | 6.0                      | 16.0                    |
| -          |     |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
| SW GRID    | J   | 10.50                | -                                 | -               | -                       | -                     | -                      | -                    | -                 | -                        | -                       |
| SW Segment | J.1 | 10.50                | 9.50                              | 0.90            | S-P-F #1/#2             | 0.42                  | Interstory             | 9.50                 | 12.0              | 6.0                      | 16.0                    |
|            |     |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |

#### Shear Wall Loads and Summary

| SW Mark    |     | EQ (Ib) Wall<br>(ULT) | Wind (lb) Wall<br>(ULT) | Wall DL (lb) | Wall DL (lb)<br>End 1 | Wall DL (Ib)<br>End 2 | Shear Wall Type | MIN. # of<br>End Studs | Holdown                   |
|------------|-----|-----------------------|-------------------------|--------------|-----------------------|-----------------------|-----------------|------------------------|---------------------------|
| SW GRID    | С   | 8079                  | 2792                    | -            | -                     | -                     | -               | -                      | -                         |
| SW Segment | C.1 | 4399                  | 1520                    | 4059         | 1500                  | 1500                  | SW-6            | 2                      | No Strap                  |
| SW Segment | C.2 | 3680                  | 1272                    | 3299         | 1500                  | 1500                  | SW-6            | 2                      | No Strap                  |
|            |     |                       |                         |              |                       |                       |                 |                        |                           |
| SW GRID    |     |                       |                         |              |                       |                       | -               | -                      | -                         |
|            |     |                       |                         |              |                       |                       |                 |                        |                           |
|            |     |                       |                         |              |                       |                       |                 |                        |                           |
|            |     |                       |                         |              |                       |                       |                 |                        |                           |
| SW GRID    | I   | 4121                  | 2460                    |              |                       |                       | -               | -                      | -                         |
| SW Segment | l.1 | 4121                  | 2460                    | 2468         | 1500                  | 500                   | SW-6            | 2                      | MSTC48B3 (3975DF, 3900HF) |
|            |     |                       |                         |              |                       |                       |                 |                        |                           |
|            |     |                       |                         |              |                       |                       |                 |                        |                           |
| SW GRID    | J   | 3958                  | 2792                    |              |                       |                       | -               | -                      | -                         |
| SW Segment | J.1 | 3958                  | 2792                    | 2205         | 500                   | 500                   | SW-6            | 2                      | MSTC52 (4610 max.)        |
|            |     |                       |                         |              |                       |                       |                 |                        |                           |
|            |     |                       |                         |              |                       |                       |                 |                        |                           |
|            |     | 1                     |                         |              |                       | 1                     |                 |                        |                           |

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 7/29/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 1        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

#### Structure: Intrachat Residence

Floor Level: Walls Below Roof Level East West

| Shear Wall Type | Sheathing Grade, Sheathing Thickness, & Nail Size | Panel Edge<br>Nail<br>Spacing (in) | Nominal Seismic<br>SW Capacity (plf) | LRFD<br>Seismic SW<br>Capacity<br>(plf) | Nominal<br>Wind SW<br>Capacity<br>(plf) | LRFD Wind<br>SW<br>Capacity<br>(plf) | Sheathing<br>Shear<br>Stiffness, G<br>(Ib/in) |
|-----------------|---------------------------------------------------|------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------|-----------------------------------------------|
| SW-6            | APA Rated, 7/16", 8d Common                       | 6                                  | 520                                  | 416                                     | 730                                     | 584                                  | 10                                            |
| SW-4            | APA Rated, 7/16", 8d Common                       | 4                                  | 760                                  | 608                                     | 1065                                    | 852                                  | 13                                            |
| SW-3            | APA Rated, 7/16", 8d Common                       | 3                                  | 980                                  | 784                                     | 1370                                    | 1096                                 | 15                                            |
| SW-2            | APA Rated, 7/16", 8d Common                       | 2                                  | 1280                                 | 1024                                    | 1790                                    | 1432                                 | 20                                            |
| 2SW-4           | APA Rated, 7/16", 8d Common                       | 4                                  | 1520                                 | 1216                                    | 2130                                    | 1704                                 | 26                                            |
| 2SW-3           | APA Rated, 7/16", 8d Common                       | 3                                  | 1960                                 | 1568                                    | 2740                                    | 2192                                 | 30                                            |
| 2SW-2           | APA Rated, 7/16", 8d Common                       | 2                                  | 2560                                 | 2048                                    | 3580                                    | 2864                                 | 40                                            |

### Determine Shear Wall Type (LRFD)

| SW Segment Mark | Seismic Shear<br>(plf) | Aspect Ratio<br>Reduction | Adjusted<br>Seismic<br>Shear (plf) | Wind Shear<br>(plf) | Adjusted<br>Wind Shear<br>(plf) | Controlling Shear<br>(plf) | Shear Wall<br>Type | Shear Wall<br>Capacity<br>(plf) | Check | Controlling<br>Shear |
|-----------------|------------------------|---------------------------|------------------------------------|---------------------|---------------------------------|----------------------------|--------------------|---------------------------------|-------|----------------------|
| C.1             | 228                    | 1.00                      | 247                                | 79                  | 85                              | 247                        | SW-6               | 416                             | ОК    | Seismic              |
| C.2             | 228                    | 1.00                      | 247                                | 79                  | 85                              | 247                        | SW-6               | 416                             | ОК    | Seismic              |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
| l.1             | 351                    | 1.00                      | 381                                | 209                 | 228                             | 381                        | SW-6               | 416                             | OK    | Seismic              |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 | }                      |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
| J.1             | 377                    | 1.00                      | 410                                | 266                 | 289                             | 410                        | SW-6               | 416                             | ОК    | Seismic              |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |

#### Determine Shear Wall Overturning Moment Lever Arm

| SW Segment Mark | Wall Length<br>Lever Arm (ft) | Calculated<br>Lever Arm (ft) | % Different | Override Wall<br>Length | User Input<br>M <sub>OT</sub> Lever<br>Arm (ft) |
|-----------------|-------------------------------|------------------------------|-------------|-------------------------|-------------------------------------------------|
| C.1             | 19.33                         | 19.12                        | 1.09%       | No                      |                                                 |
| C.2             | 16.17                         | 15.96                        | 1.31%       | No                      |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 | -                             |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
| l.1             | 11.75                         | 11.54                        | 1.81%       | No                      |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
| J.1             | 10.50                         | 10.29                        | 2.02%       | Yes                     | 8.75                                            |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 7/29/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 3        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

\*NOTE: CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN SHEAR WALL CAPACITY BETWEEN WIND & EQ

#### Structure: Intrachat Residence

Floor Level: Walls Below Roof Level East West

### Shear Wall End Axial Load (ASD)

| SW Segment Mark | Seismic<br>Tension (Ib) | ASD Seismic<br>Tension<br>Above (Ib) | Seismic<br>Tension<br>Total (Ib) | Wind Tension<br>(Ib) | ASD Wind<br>Tension<br>Above (Ib) | Wind Tension<br>Total (Ib) | End 1 Dead<br>(lb) | End 2 Dead<br>(Ib) |
|-----------------|-------------------------|--------------------------------------|----------------------------------|----------------------|-----------------------------------|----------------------------|--------------------|--------------------|
| C.1             | 1513                    |                                      | 1513                             | 448                  |                                   | 448                        | 3530               | 3530               |
| C.2             | 1434                    |                                      | 1434                             | 425                  |                                   | 425                        | 3149               | 3149               |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
| l.1             | 2332                    |                                      | 2332                             | 1193                 |                                   | 1193                       | 2734               | 1734               |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
| J.1             | 3008                    |                                      | 3008                             | 1819                 |                                   | 1819                       | 1603               | 1603               |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |

#### Determine Required Holdown (ASD)

| SW Segment Mark | Wind End 1<br>Eq. 16-15 | EQ End 1<br>Eq. 16-16 | Wind End 2<br>Eq. 16-15 | EQ End 2<br>Eq. 16-16 | Controlling<br>Ten. Load<br>(lb) | Holdown                   | Holdown<br>Capacity<br>(lb) | Status |
|-----------------|-------------------------|-----------------------|-------------------------|-----------------------|----------------------------------|---------------------------|-----------------------------|--------|
| C.1             | 1669                    | 125                   | 1669                    | 125                   | 125                              | No Strap                  | 0                           | ОК     |
| C.2             | 1465                    | 28                    | 1465                    | 28                    | 28                               | No Strap                  | 0                           | ОК     |
|                 |                         |                       |                         |                       |                                  |                           |                             |        |
|                 |                         |                       |                         |                       |                                  |                           |                             |        |
|                 |                         |                       |                         |                       |                                  |                           | -                           |        |
|                 |                         |                       |                         |                       |                                  |                           |                             |        |
|                 |                         |                       |                         |                       |                                  |                           |                             |        |
|                 |                         |                       |                         |                       |                                  |                           |                             |        |
|                 |                         |                       |                         |                       |                                  |                           |                             |        |
| I.1             | 447                     | -1063                 | -153                    | -1528                 | -1528                            | MSTC48B3 (3975DF, 3900HF) | -3900                       | ОК     |
|                 |                         |                       |                         |                       |                                  |                           |                             |        |
|                 |                         |                       |                         |                       |                                  |                           |                             |        |
|                 |                         |                       |                         |                       |                                  |                           |                             |        |
|                 |                         |                       |                         |                       |                                  |                           |                             |        |
| J.1             | -857                    | -2264                 | -857                    | -2264                 | -2264                            | MSTC52 (4610 max.)        | -3653                       | OK     |
|                 |                         |                       |                         |                       |                                  |                           |                             |        |
|                 |                         |                       |                         |                       |                                  |                           |                             |        |
|                 |                         |                       |                         |                       |                                  |                           |                             |        |
|                 |                         |                       |                         |                       |                                  |                           |                             |        |

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 7/29/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 3        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

Structure: Intrachat Residence

Floor Level: Walls Below Seoncd Floor East West

Sds = 0.97 17.25

Depth of Floor Framing & Plates (Clearspan) at Interstory (in) =

Shear Wall Line Information

| SW Mark    |     | L <sub>sw</sub> (ft) | Wall Pier<br>h <sub>wp</sub> (ft) | Aspect<br>Ratio | Wall Framing<br>Species | Specific<br>Gravity G | Interstory of<br>Base? | h <sub>sw</sub> (ft) | Wall Wt.<br>(psf) | Roof/Floor<br>Trib. (ft) | Roof/Floor<br>Wt. (psf) |
|------------|-----|----------------------|-----------------------------------|-----------------|-------------------------|-----------------------|------------------------|----------------------|-------------------|--------------------------|-------------------------|
| SW GRID    | С   | 21.67                | -                                 | -               | -                       | -                     | -                      | -                    | -                 | -                        | -                       |
| SW Segment | C.1 | 5.50                 | 9.50                              | 1.73            | S-P-F #1/#2             | 0.42                  | Base                   | 9.50                 | 12.0              | 6.0                      | 12.0                    |
| SW Segment | C.2 | 16.17                | 9.50                              | 0.59            | S-P-F #1/#2             | 0.42                  | Base                   | 9.00                 | 12.0              | 6.0                      | 12.0                    |
|            |     |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
| SW GRID    | E   | 21.75                | -                                 | -               | -                       | -                     | -                      | -                    | -                 | -                        | -                       |
| SW Segment | E.1 | 21.75                | 9.50                              | 0.44            | S-P-F #1/#2             | 0.42                  | Interstory             | 9.00                 | 12.0              | 3.0                      | 12.0                    |
|            |     |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
| SW GRID    |     | 0.00                 | -                                 | -               | -                       | -                     | -                      | -                    | -                 | -                        | -                       |
|            |     |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
| SW GRID    | J   | 10.50                | -                                 | -               | -                       | -                     | -                      | -                    | -                 | -                        | -                       |
| SW Segment | J.1 | 10.50                | 9.50                              | 0.90            | S-P-F #1/#2             | 0.42                  | Interstory             | 9.50                 | 12.0              | 4.0                      | 12.0                    |
|            |     |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
|            |     |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |

#### Shear Wall Loads and Summary

| SW Mark    |     | EQ (Ib) Wall<br>(ULT) | Wind (lb) Wall<br>(ULT) | Wall DL (lb) | Wall DL (lb)<br>End 1 | Wall DL (lb)<br>End 2 | Shear Wall Type | MIN. # of<br>End Studs | Holdown              |
|------------|-----|-----------------------|-------------------------|--------------|-----------------------|-----------------------|-----------------|------------------------|----------------------|
| SW GRID    | С   | 10023                 | 4219                    | -            | -                     | -                     | -               | -                      | -                    |
| SW Segment | C.1 | 2544                  | 1071                    | 1023         | 1000                  | 1000                  | SW-4            | 2                      | HDU2 (3075DF,2215HF) |
| SW Segment | C.2 | 7479                  | 3148                    | 2911         | 500                   | 500                   | SW-4            | 2                      | HDU2 (3075DF,2215HF) |
|            |     |                       |                         |              |                       |                       |                 |                        |                      |
| SW GRID    | E   | 7681                  | 9360                    |              |                       |                       | -               | -                      | -                    |
| SW Segment | E.1 | 7681                  | 9360                    | 3132         | 500                   | 500                   | SW-6            | 2                      | MSTC52 (4610 max.)   |
|            |     |                       |                         |              |                       |                       |                 |                        |                      |
| SW GRID    |     |                       |                         |              |                       |                       | -               | -                      | -                    |
|            |     |                       |                         |              |                       |                       |                 |                        |                      |
|            |     |                       |                         |              |                       |                       |                 |                        |                      |
|            |     |                       |                         |              |                       |                       |                 |                        |                      |
| SW GRID    | J   | 3958                  | 6937                    |              |                       |                       | -               | -                      | -                    |
| SW Segment | J.1 | 3958                  | 6937                    | 1701         | 500                   | 500                   | SW-4            | 2                      | MSTC66 (5850 max.)   |
|            |     |                       |                         |              |                       |                       |                 |                        |                      |
|            |     |                       |                         |              |                       |                       |                 |                        |                      |
|            |     | 1                     |                         |              |                       | 1                     |                 |                        |                      |

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 7/29/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 1        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

#### Structure: Intrachat Residence

Floor Level: Walls Below Seoncd Floor East West

| iear Wall Schedule (LF<br>Shear Wall Type | Sheathing Grade, Sheathing Thickness, & Nail Size | Panel Edge<br>Nail<br>Spacing (in) | Nominal Seismic<br>SW Capacity (plf) | ∳ <sub>D</sub> =<br>LRFD<br>Seismic SW<br>Capacity<br>(plf) | 0.8<br>Nominal<br>Wind SW<br>Capacity<br>(plf) | LRFD Wind<br>SW<br>Capacity<br>(plf) | Sheathing<br>Shear<br>Stiffness, G<br>(Ib/in) |
|-------------------------------------------|---------------------------------------------------|------------------------------------|--------------------------------------|-------------------------------------------------------------|------------------------------------------------|--------------------------------------|-----------------------------------------------|
| SW-6                                      | APA Rated, 7/16", 8d Common                       | 6                                  | 520                                  | 416                                                         | 730                                            | 584                                  | 10                                            |
| SW-4                                      | APA Rated, 7/16", 8d Common                       | 4                                  | 760                                  | 608                                                         | 1065                                           | 852                                  | 13                                            |
| SW-3                                      | APA Rated, 7/16", 8d Common                       | 3                                  | 980                                  | 784                                                         | 1370                                           | 1096                                 | 15                                            |
| SW-2                                      | APA Rated, 7/16", 8d Common                       | 2                                  | 1280                                 | 1024                                                        | 1790                                           | 1432                                 | 20                                            |
| 2SW-4                                     | APA Rated, 7/16", 8d Common                       | 4                                  | 1520                                 | 1216                                                        | 2130                                           | 1704                                 | 26                                            |
| 2SW-3                                     | APA Rated, 7/16", 8d Common                       | 3                                  | 1960                                 | 1568                                                        | 2740                                           | 2192                                 | 30                                            |
| 2SW-2                                     | APA Rated, 7/16", 8d Common                       | 2                                  | 2560                                 | 2048                                                        | 3580                                           | 2864                                 | 40                                            |

#### Determine Shear Wall Type (LRFD)

| SW Segment Mark | Seismic Shear<br>(plf) | Aspect Ratio<br>Reduction | Adjusted<br>Seismic<br>Shear (plf) | Wind Shear<br>(plf) | Adjusted<br>Wind Shear<br>(plf) | Controlling Shear<br>(plf) | Shear Wall<br>Type | Shear Wall<br>Capacity<br>(plf) | Check | Controlling<br>Shear |
|-----------------|------------------------|---------------------------|------------------------------------|---------------------|---------------------------------|----------------------------|--------------------|---------------------------------|-------|----------------------|
| C.1             | 463                    | 1.00                      | 503                                | 195                 | 212                             | 503                        | SW-4               | 608                             | ОК    | Seismic              |
| C.2             | 463                    | 1.00                      | 503                                | 195                 | 212                             | 503                        | SW-4               | 608                             | ОК    | Seismic              |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
| E.1             | 353                    | 1.00                      | 384                                | 430                 | 468                             | 384                        | SW-6               | 416                             | ок    | Seismic              |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
| J.1             | 377                    | 1.00                      | 410                                | 661                 | 718                             | 718                        | SW-4               | 852                             | ОК    | Wind                 |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |

#### Determine Shear Wall Overturning Moment Lever Arm

| SW Segment Mark | Wall Length<br>Lever Arm (ft) | Calculated<br>Lever Arm (ft) | % Different | Override Wall<br>Length | User Input<br>M <sub>oT</sub> Lever<br>Arm (ft) |
|-----------------|-------------------------------|------------------------------|-------------|-------------------------|-------------------------------------------------|
| C.1             | 5.50                          | 5.02                         | 9.66%       | No                      |                                                 |
| C.2             | 16.17                         | 15.69                        | 3.09%       | No                      |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             | Na                      |                                                 |
| <b>F</b> 4      | 04.75                         | 04.54                        | 0.070/      | No                      |                                                 |
| E.1             | 21.75                         | 21.54                        | 0.97%       | No                      |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
| J.1             | 10.50                         | 10.29                        | 2.02%       | Yes                     | 8.75                                            |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 7/29/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 3        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

#### \*NOTE: CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN SHEAR WALL CAPACITY BETWEEN WIND & EQ

#### Structure: Intrachat Residence

Floor Level: Walls Below Seoncd Floor East West

#### Shear Wall End Axial Load (ASD)

| SW Segment Mark | Seismic<br>Tension (Ib) | ASD Seismic<br>Tension<br>Above (Ib) | Seismic<br>Tension<br>Total (Ib) | Wind Tension<br>(Ib) | ASD Wind<br>Tension<br>Above (Ib) | Wind Tension<br>Total (Ib) | End 1 Dead<br>(Ib) | End 2 Dead<br>(Ib) |
|-----------------|-------------------------|--------------------------------------|----------------------------------|----------------------|-----------------------------------|----------------------------|--------------------|--------------------|
| C.1             | 3076                    |                                      | 3076                             | 1110                 |                                   | 1110                       | 1512               | 1512               |
| C.2             | 2914                    |                                      | 2914                             | 1051                 |                                   | 1051                       | 1955               | 1955               |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
| E.1             | 2225                    |                                      | 2225                             | 2324                 |                                   | 2324                       | 2066               | 2066               |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
| J.1             | 3008                    |                                      | 3008                             | 4519                 |                                   | 4519                       | 1351               | 1351               |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |
|                 |                         |                                      |                                  |                      |                                   |                            |                    |                    |

#### Determine Required Holdown (ASD)

| SW Segment Mark | Wind End 1<br>Eq. 16-15 | EQ End 1<br>Eq. 16-16 | Wind End 2<br>Eq. 16-15 | EQ End 2<br>Eq. 16-16 | Controlling<br>Ten. Load<br>(lb) | Holdown              | Holdown<br>Capacity<br>(lb) | Status |
|-----------------|-------------------------|-----------------------|-------------------------|-----------------------|----------------------------------|----------------------|-----------------------------|--------|
| C.1             | -203                    | -2374                 | -203                    | -2374                 | -2374                            | HDU2 (3075DF,2215HF) | -2215                       | OK     |
| C.2             | 122                     | -2006                 | 122                     | -2006                 | -2006                            | HDU2 (3075DF,2215HF) | -2215                       | ОК     |
|                 |                         |                       |                         |                       |                                  |                      |                             |        |
| E.1             | -1084                   | -1266                 | -1084                   | -1266                 | -1266                            | MSTC52 (4610 max.)   | -3653                       | ок     |
|                 |                         |                       |                         |                       |                                  |                      |                             |        |
|                 |                         |                       |                         |                       |                                  |                      |                             |        |
|                 |                         |                       |                         |                       |                                  |                      |                             |        |
| J.1             | -3709                   | -2381                 | -3709                   | -2381                 | -3709                            | MSTC66 (5850 max.)   | -5499                       | ок     |
|                 |                         |                       |                         |                       |                                  |                      |                             |        |
|                 |                         |                       |                         |                       |                                  |                      |                             |        |

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 7/29/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 3        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

Structure: Intrachat Residence

Floor Level: Walls Below First Floor East West

Sds =

0.97

17.25

Depth of Floor Framing & Plates (Clearspan) at Interstory (in) =

Shear Wall Line Information

| SW Mark    |     | L <sub>sw</sub> (ft) | Wall Pier<br>h <sub>wp</sub> (ft) | Aspect<br>Ratio | Wall Framing<br>Species | Specific<br>Gravity G | Interstory of<br>Base? | h <sub>sw</sub> (ft) | Wall Wt.<br>(psf) | Roof/Floor<br>Trib. (ft) | Roof/Floor<br>Wt. (psf) |
|------------|-----|----------------------|-----------------------------------|-----------------|-------------------------|-----------------------|------------------------|----------------------|-------------------|--------------------------|-------------------------|
| SW GRID    |     | 0.00                 | -                                 | -               | -                       | -                     | -                      | -                    | -                 | -                        | -                       |
|            |     |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
| SW GRID    | E   | 30.00                | -                                 | -               | -                       | -                     | -                      | -                    | -                 | -                        | -                       |
| SW Segment | E.1 | 30.00                | 8.17                              | 0.27            | S-P-F #1/#2             | 0.42                  | Base                   | 8.17                 | 12.0              | 4.0                      | 12.0                    |
|            |     |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
| SW GRID    |     | 0.00                 | -                                 | -               | -                       | -                     | -                      | -                    | -                 | -                        | -                       |
|            |     |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |
| SW GRID    | J   | 32.00                | -                                 | -               | -                       | -                     | -                      | -                    | -                 | -                        | -                       |
| SW Segment | J.1 | 32.00                | 8.17                              | 0.26            | S-P-F #1/#2             | 0.42                  | Base                   | 8.17                 | 12.0              | 4.0                      | 12.0                    |
|            |     |                      |                                   |                 |                         |                       |                        |                      |                   |                          |                         |

#### Shear Wall Loads and Summary

| SW Mark    |      | EQ (Ib) Wall<br>(ULT) | Wind (lb) Wall<br>(ULT) | Wall DL (lb) | Wall DL (lb)<br>End 1 | Wall DL (lb)<br>End 2 | Shear Wall Type | MIN. # of<br>End Studs | Holdown               |
|------------|------|-----------------------|-------------------------|--------------|-----------------------|-----------------------|-----------------|------------------------|-----------------------|
| SW GRID    |      |                       |                         | -            | -                     | -                     | -               | -                      | -                     |
|            |      |                       |                         |              |                       |                       |                 |                        |                       |
|            |      |                       |                         |              |                       |                       |                 |                        |                       |
|            |      |                       |                         |              |                       |                       |                 |                        |                       |
|            |      |                       |                         |              |                       |                       |                 |                        |                       |
| SW GRID    | E    | 9821                  | 14662                   |              |                       |                       | -               | -                      | -                     |
| SW Segment | E.1  | 9821                  | 14662                   | 4381         | 500                   | 500                   | SW-6            | 2                      | HDU5 (5645DF, 4340HF) |
| Sw Segment | L. I | 502.1                 | 14002                   | 4301         | 500                   | 500                   | 311-0           | 2                      |                       |
|            |      |                       |                         |              |                       |                       |                 |                        |                       |
| SW GRID    |      |                       |                         |              |                       |                       | -               | -                      | -                     |
|            |      |                       |                         |              |                       |                       |                 |                        |                       |
|            |      |                       |                         |              |                       |                       |                 |                        |                       |
|            |      |                       |                         |              |                       |                       |                 |                        |                       |
| SW GRID    | J    | 6041                  | 10886                   |              |                       |                       | -               | -                      | -                     |
| SW Segment | J.1  | 6041                  | 10886                   | 4673         | 500                   | 500                   | SW-6            | 2                      | HDU2 (3075DF,2215HF)  |
|            |      |                       |                         |              |                       |                       |                 |                        |                       |
|            |      |                       |                         |              |                       |                       |                 |                        |                       |
|            |      |                       |                         |              |                       |                       |                 |                        |                       |

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 9/14/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 1        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

#### Structure: Intrachat Residence

Floor Level: Walls Below First Floor East West

| ear Wall Schedule (LF | RFD)                                              |                                    |                                      | φ <sub>D</sub> =                        | 0.8                                     |                                      |                                               |
|-----------------------|---------------------------------------------------|------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------|-----------------------------------------------|
| Shear Wall Type       | Sheathing Grade, Sheathing Thickness, & Nail Size | Panel Edge<br>Nail<br>Spacing (in) | Nominal Seismic<br>SW Capacity (plf) | LRFD<br>Seismic SW<br>Capacity<br>(plf) | Nominal<br>Wind SW<br>Capacity<br>(plf) | LRFD Wind<br>SW<br>Capacity<br>(plf) | Sheathing<br>Shear<br>Stiffness, (<br>(Ib/in) |
| SW-6                  | APA Rated, 7/16", 8d Common                       | 6                                  | 520                                  | 416                                     | 730                                     | 584                                  | 10                                            |
| SW-4                  | APA Rated, 7/16", 8d Common                       | 4                                  | 760                                  | 608                                     | 1065                                    | 852                                  | 13                                            |
| SW-3                  | APA Rated, 7/16", 8d Common                       | 3                                  | 980                                  | 784                                     | 1370                                    | 1096                                 | 15                                            |
| SW-2                  | APA Rated, 7/16", 8d Common                       | 2                                  | 1280                                 | 1024                                    | 1790                                    | 1432                                 | 20                                            |
| 2SW-4                 | APA Rated, 7/16", 8d Common                       | 4                                  | 1520                                 | 1216                                    | 2130                                    | 1704                                 | 26                                            |
| 2SW-3                 | APA Rated, 7/16", 8d Common                       | 3                                  | 1960                                 | 1568                                    | 2740                                    | 2192                                 | 30                                            |
| 2SW-2                 | APA Rated, 7/16", 8d Common                       | 2                                  | 2560                                 | 2048                                    | 3580                                    | 2864                                 | 40                                            |

#### Determine Shear Wall Type (LRFD)

| SW Segment Mark | Seismic Shear<br>(plf) | Aspect Ratio<br>Reduction | Adjusted<br>Seismic<br>Shear (plf) | Wind Shear<br>(plf) | Adjusted<br>Wind Shear<br>(plf) | Controlling Shear<br>(plf) | Shear Wall<br>Type | Shear Wall<br>Capacity<br>(plf) | Check | Controlling<br>Shear |
|-----------------|------------------------|---------------------------|------------------------------------|---------------------|---------------------------------|----------------------------|--------------------|---------------------------------|-------|----------------------|
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
| E.1             | 327                    | 1.00                      | 356                                | 489                 | 531                             | 531                        | SW-6               | 584                             | ок    | Wind                 |
| L. I            | 321                    | 1.00                      | 330                                | 409                 | 001                             | 551                        | 300-0              | 304                             | UK    | wind                 |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 | 100                    | 4.00                      | 005                                | 0.10                | 070                             | 070                        |                    |                                 | 014   |                      |
| J.1             | 189                    | 1.00                      | 205                                | 340                 | 370                             | 370                        | SW-6               | 584                             | ОК    | Wind                 |
| L               |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |
|                 |                        |                           |                                    |                     |                                 |                            |                    |                                 |       |                      |

#### Determine Shear Wall Overturning Moment Lever Arm

| SW Segment Mark | Wall Length<br>Lever Arm (ft) | Calculated<br>Lever Arm (ft) | % Different | Override Wall<br>Length | User Input<br>M <sub>OT</sub> Lever<br>Arm (ft) |
|-----------------|-------------------------------|------------------------------|-------------|-------------------------|-------------------------------------------------|
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
| E.1             | 30.00                         | 29.52                        | 1.64%       | Yes                     | 23.00                                           |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
| J.1             | 32.00                         | 31.52                        | 1.54%       | No                      |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |
|                 |                               |                              |             |                         |                                                 |

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 9/14/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 3        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

\*NOTE: CONTROLLING SHEAR IS BASED ON THE DIFFERENCE IN SHEAR WALL CAPACITY BETWEEN WIND & EQ

#### Structure: Intrachat Residence

Floor Level: Walls Below First Floor East West

### Shear Wall End Axial Load (ASD)

| Seismic<br>Tension (Ib) | ASD Seismic<br>Tension<br>Above (Ib) | Seismic<br>Tension<br>Total (Ib)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Wind Tension<br>(Ib)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ASD Wind<br>Tension<br>Above (Ib)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wind Tension<br>Total (Ib)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | End 1 Dead<br>(lb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | End 2 Dead<br>(lb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2442                    | 1266                                 | 3708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1080                    | 1191                                 | 2270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         | Tension (Ib)                         | Seismic<br>Tension (Ib)<br>Tension (Ib)<br>Tension<br>Above | Seismic<br>Tension (lb)     Tension<br>Above (lb)     Tension<br>Total (lb)       Image: Image | Seismic<br>Tension (lb)     Tension<br>Above (lb)     Tension<br>Total (lb)     Wind tension<br>(lb)       Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)       Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)       Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)       Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)       Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)       Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)       Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)       Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)       Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb)       Image: Constraint of the seison<br>(lb)     Image: Constraint of the seison<br>(lb) | Seismic<br>Tension (lb)     Tension<br>Above (lb)     Tension<br>Total (lb)     Wind Tension<br>(lb)     Tension<br>Above (lb)       Image: Seismic<br>Above (lb)     Image: Seismic<br>Total (lb)     Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)       Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)       Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)       Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)       Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)       Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)       Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)       Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)       Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)       Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)       Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)     Image: Seismic<br>Above (lb)< | Seismic<br>Tension (lb)     Tension<br>Above (lb)     Tension<br>Total (lb)     Tension<br>(lb)     Tension<br>Above (lb)     Wind fension<br>Total (lb)       Image: Seismic Tension (lb)     Tension (lb)     Tension (lb)     Tension (lb)     Total (lb)       Image: Seismic Tension (lb)     Image: Seismic Tension (lb)     Tension (lb)     Total (lb)     Total (lb)       Image: Seismic Tension (lb)     Image: Seismic Tension (lb)     Image: Seismic Tension (lb)     Total (lb)     Total (lb)       Image: Seismic Tension (lb)     Image: Seismic Tension (lb)     Image: Seismic Tension (lb)     Image: Seismic Tension (lb)     Total (lb)       Image: Seismic Tension (lb)     Image: Seismic Tension (lb)     Image: Seismic Tension (lb)     Image: Seismic Tension (lb)     Total (lb)       Image: Seismic Tension (lb)     Image: Seismic Tension (lb)     Image: Seismic Tension (lb)     Image: Seismic Tension (lb)     Total (lb)       Image: Seismic Tension (lb)     Image: Seismic Tension (lb)     Image: Seismic Tension (lb)     Image: Seismic Tension (lb)     Image: Seismic Tension (lb)       Image: Seismic Tension (lb)     Image: Seismic Tension (lb)     Image: Seismic Tension (lb)     Image: Seismic Tension (lb)     Image: Seismic Tension (lb)       Image: Seismic Tension (lb)     Image: Seismic Tension (lb)     Image: Seismic Tension (lb)     Image: Seismic Tension (lb)     Image: Seismic Tension (lb)       Image: Seismic Tension (lb) | Seismic<br>Tension<br>Above (lb)Tension<br>Total (lb)Tension<br>(lb)Tension<br>Above (lb)Wind fension<br>Total (lb)End 7 Dead<br>(lb)Image: Seismic Tension (lb)Tension<br>Total (lb)Tension<br>Total (lb)Tension<br>Total (lb)End 7 Dead<br>(lb)Image: Seismic Tension (lb)Image: Seismic Tension<br>Total (lb)Tension<br>Total (lb)Tension<br>Total (lb)End 7 Dead<br>(lb)Image: Seismic Tension (lb)Image: Seismic Tension<br>Total (lb)Image: Seismic Tension<br>Total (lb)Tension<br>Total (lb)End 7 Dead<br>(lb)Image: Seismic Tension Tension (lb)Image: Seismic Tension (lb)Image: Seismic Tension (lb)<br>Total (lb)Image: Seismic Tension (lb)End 7 Dead<br>(lb)Image: Seismic Tension Tension Tension Tension (lb)Image: Seismic Tension (lb)Image: Seismic Tension (lb)Image: Seismic Tension (lb)End 7 Dead<br>(lb)Image: Seismic Tension Tension Tension Tension Tension Tension (lb)Image: Seismic Tension (lb)Image: Seismic Tension (lb)Image: Seismic Tension (lb)Image: Seismic Tension Tension Tension Tension Tension Tension Tension (lb)Image: Seismic Tension (lb)Image: Seismic Tension (lb)Image: Seismic Tension (lb)Image: Seismic Tension (lb)Image: Seismic Tension Tensio |

#### Determine Required Holdown (ASD)

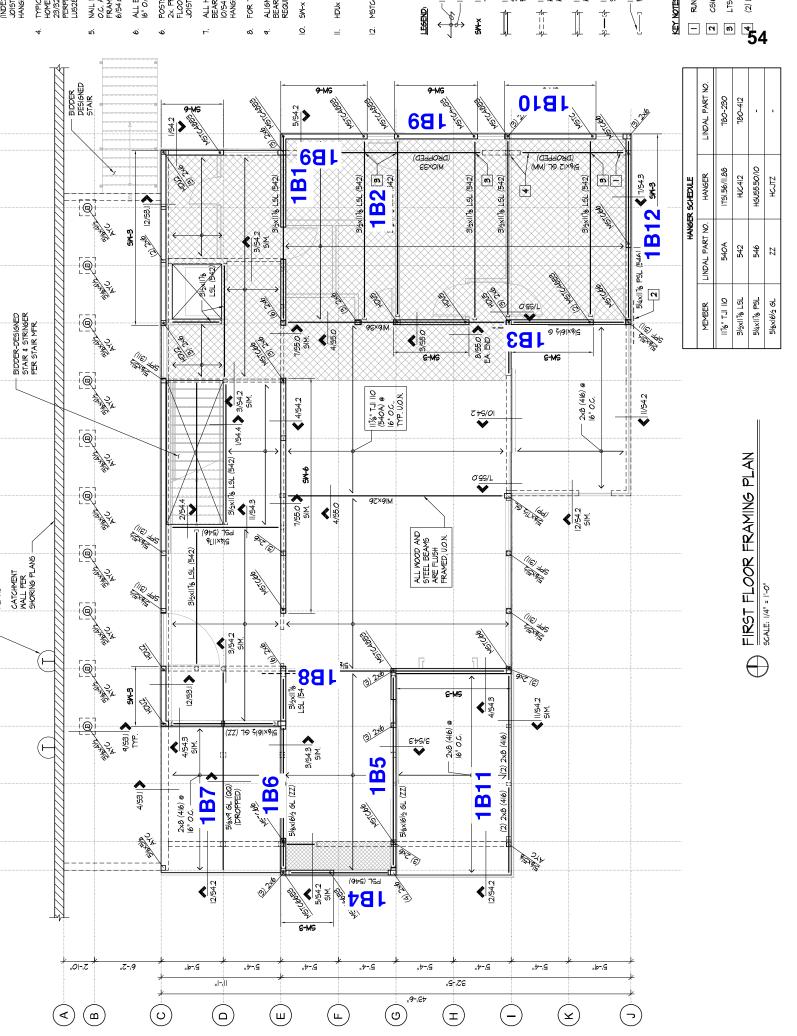
| SW Segment Mark | Wind End 1<br>Eq. 16-15 | EQ End 1<br>Eq. 16-16 | Wind End 2<br>Eq. 16-15 | EQ End 2<br>Eq. 16-16 | Controlling<br>Ten. Load<br>(lb) | Holdown               | Holdown<br>Capacity<br>(lb) | Status |
|-----------------|-------------------------|-----------------------|-------------------------|-----------------------|----------------------------------|-----------------------|-----------------------------|--------|
|                 |                         |                       |                         |                       |                                  |                       |                             |        |
|                 |                         |                       |                         |                       |                                  |                       |                             |        |
|                 |                         |                       |                         |                       |                                  |                       |                             |        |
|                 |                         |                       |                         |                       |                                  |                       |                             |        |
|                 |                         |                       |                         |                       |                                  |                       |                             |        |
| E.1             | -2595                   | -2459                 | -2595                   | -2459                 | -2595                            | HDU5 (5645DF, 4340HF) | -4340                       | ОК     |
|                 |                         |                       |                         |                       |                                  |                       |                             |        |
|                 |                         |                       |                         |                       |                                  |                       |                             |        |
|                 |                         |                       |                         |                       |                                  |                       |                             |        |
|                 |                         |                       |                         |                       |                                  |                       |                             |        |
|                 |                         |                       |                         |                       |                                  |                       |                             |        |
|                 |                         |                       |                         |                       |                                  |                       |                             |        |
|                 |                         |                       |                         |                       |                                  |                       |                             |        |
| J.1             | -1820                   | -954                  | -1820                   | -954                  | -1820                            | HDU2 (3075DF,2215HF)  | -2215                       | ОК     |
|                 |                         |                       |                         |                       |                                  |                       |                             |        |
|                 |                         |                       |                         |                       |                                  |                       |                             |        |
|                 |                         |                       |                         |                       |                                  |                       |                             |        |

| Quantum Consulting Engineers LLC | Project: 42255 - Intrachat | Date:       | 9/14/22 | Job No: | 22252.01 |
|----------------------------------|----------------------------|-------------|---------|---------|----------|
| 1511 Third Avenue, Suite 323     |                            | Designer:   | TVM     | Sheet:  | 3        |
| Seattle, WA 98101                | Client: Lindal Cedar Homes | Checked By: |         |         |          |

| Trellis Lateral Design                                                                                          |                                   | Beam Lin                                           |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------|
| Canopy roof is a cantilevered diaphragm that<br>drags the trellis load back to grid C shear walls.              | 11'-0"                            | 58'                                                |
| Canopy diaphragm is sheathed with 5/8"                                                                          |                                   |                                                    |
|                                                                                                                 |                                   | psf                                                |
|                                                                                                                 |                                   | $-V$ $\begin{bmatrix} 3 \text{ psf} \end{bmatrix}$ |
| v <sub>all</sub> = 360 plf (0.92) / 2                                                                           | 12 psf                            |                                                    |
|                                                                                                                 | plywood                           |                                                    |
| sheathing (8d nails @ 6" o.c. at edges).<br>v <sub>all</sub> = 360 plf (0.92) / 2<br>v <sub>all</sub> = 166 plf |                                   | <b>_</b> <del>\</del> _                            |
| Λ                                                                                                               |                                   |                                                    |
| Seismic Mass:<br>W = 3 psf (11') (58' + 5.33') + 12 psf (5.5') (11')<br>W = 2816 lb                             | •                                 |                                                    |
| Cs = 0.15                                                                                                       |                                   |                                                    |
| Cs effective at second floor based on vertical                                                                  |                                   |                                                    |
| distribution is 0.14, use 0.15 (conservative)                                                                   |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
| V = 2816 lb (0.15)                                                                                              |                                   | axis to to verify beams are adequate for           |
| V = 423 lb                                                                                                      | week axis seismic load.           |                                                    |
| V = 423 fb<br>$V_{asd} = 2.5 (0.7) (423 \text{ lb})$                                                            |                                   |                                                    |
| $V_{asd} = 740 \text{ lb}$                                                                                      | V = 740 lb / 3 beams              | M = 246 lb (5.5') (12)                             |
|                                                                                                                 | V = 246 lb                        | M = 16236 lb-in                                    |
| $v_{asd} = 740 \text{ lb} / 11'$                                                                                |                                   |                                                    |
| v <sub>asd</sub> = 68 plf < 166 plf OK                                                                          | S = 10.5 (3.125) <sup>2</sup> / 6 | M/S = 877 psi                                      |
| T = C = 740  lb (6.6  c) (111)                                                                                  | S = 18.5 in <sup>2</sup>          | f'b = 2000 psi OK                                  |
| T = C = 740  lb (5.5' / 11')                                                                                    |                                   |                                                    |
| T = C = 370 lb < 955 lb OK (LSTA15)                                                                             |                                   |                                                    |
| Use LSTA15 strap back to blocking.                                                                              |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
|                                                                                                                 |                                   |                                                    |
| INTRACHAT HOAN<br>project                                                                                       |                                   |                                                    |

| 1511 THIRD AVE<br>SUITE 323                         |
|-----------------------------------------------------|
| SEATTLE, WA 98                                      |
| TEL 206.957.39<br>FAX 206.957.39<br>www.quantumce.e |
|                                                     |

|                         | INTRACHAT HOANG RESIDENCE | 06/23/20   |
|-------------------------|---------------------------|------------|
|                         | project                   | date       |
| VENUE                   |                           | drawn by:  |
| 98101<br>.3900<br>.3901 | LINDAL CEDAR HOMES        | TVM        |
| ce.com                  | client                    | design by: |

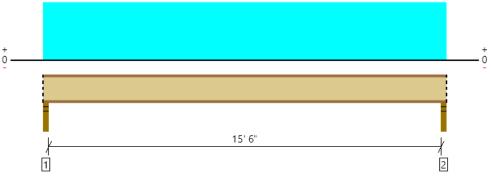

sheet no.



## **42252 INTRACHAT RESIDENCE** 7929 EAST MERCER WAY MERCER ISLAND, WA 98040

QUANTUM JOB NUMBER: 22252.01

# **GRAVITY DESIGN**






## First Floor, Typical Joist 1 piece(s) 11 7/8" TJI ® 110 @ 16" OC

ASSED 55





All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

|                            |                    |              | 1              | 1    |                             |
|----------------------------|--------------------|--------------|----------------|------|-----------------------------|
| Design Results             | Actual @ Location  | Allowed      | Result         | LDF  | Load: Combination (Pattern) |
| Member Reaction (lbs)      | 553 @ 1 3/4"       | 1174 (2.75") | Passed (47%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Shear (lbs)                | 537 @ 2 3/4"       | 1560         | Passed (34%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Moment (Ft-lbs)            | 2127 @ 7' 11 3/4"  | 3160         | Passed (67%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Live Load Defl. (in)       | 0.245 @ 7' 11 3/4" | 0.392        | Passed (L/768) |      | 1.0 D + 1.0 L (All Spans)   |
| Total Load Defl. (in)      | 0.318 @ 7' 11 3/4" | 0.783        | Passed (L/591) |      | 1.0 D + 1.0 L (All Spans)   |
| TJ-Pro <sup>™</sup> Rating | 49                 | 45           | Passed         |      |                             |

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge<sup>TM</sup> Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro<sup>™</sup> Rating include: 5/8" Gypsum ceiling.

|                    | Bearing Length |           |          | Loads | to Supports |          |             |
|--------------------|----------------|-----------|----------|-------|-------------|----------|-------------|
| Supports           | Total          | Available | Required | Dead  | Floor Live  | Factored | Accessories |
| 1 - Stud wall - HF | 2.75"          | 2.75"     | 1.75"    | 128   | 426         | 553      | Blocking    |
| 2 - Stud wall - HF | 2.75"          | 2.75"     | 1.75"    | 128   | 426         | 553      | Blocking    |

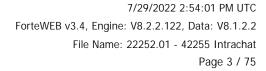
• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing  | Bracing Intervals | Comments |  |  |  |  |
|------------------|-------------------|----------|--|--|--|--|
| Top Edge (Lu)    | 3' 10" o/c        |          |  |  |  |  |
| Bottom Edge (Lu) | 16' o/c           |          |  |  |  |  |
|                  |                   |          |  |  |  |  |

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

|                   |                  |         | Dead   | Floor Live |              |
|-------------------|------------------|---------|--------|------------|--------------|
| Vertical Load     | Location         | Spacing | (0.90) | (1.00)     | Comments     |
| 1 - Uniform (PSF) | 0 to 15' 11 1/2" | 16"     | 12.0   | 40.0       | Default Load |

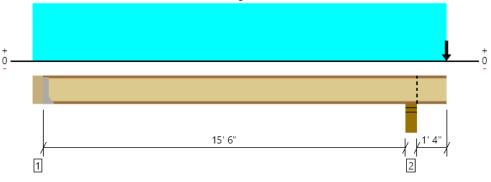

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator | Job Notes |
|----------------------------|-----------|
| Travis Michaud             |           |
| QCE<br>(206) 957-3917      |           |
| tmichaud@guantumce.com     |           |






## First Floor, Typical Cantilever Joist 1 piece(s) 11 7/8" TJI ® 110 @ 16" OC

PASSED





All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results             | Actual @ Location  | Allowed      | Result          | LDF  | Load: Combination (Pattern)         |
|----------------------------|--------------------|--------------|-----------------|------|-------------------------------------|
| Member Reaction (lbs)      | 1964 @ 16' 1 3/4"  | 2350 (5.25") | Passed (84%)    | 1.00 | 1.0 D + 1.0 L (All Spans)           |
| Shear (lbs)                | 1568 @ 16' 4 1/2"  | 1794         | Passed (87%)    | 1.15 | 1.0 D + 0.75 L + 0.75 S (All Spans) |
| Moment (Ft-lbs)            | -2402 @ 16' 1 3/4" | 3634         | Passed (66%)    | 1.15 | 1.0 D + 0.75 L + 0.75 S (All Spans) |
| Live Load Defl. (in)       | 0.248 @ 8' 3 3/8"  | 0.393        | Passed (L/760)  |      | 1.0 D + 1.0 L (Alt Spans)           |
| Total Load Defl. (in)      | 0.134 @ 17' 8 1/2" | 0.200        | Passed (2L/280) |      | 1.0 D + 0.75 L + 0.75 S (Alt Spans) |
| TJ-Pro <sup>™</sup> Rating | 45                 | 45           | Passed          |      |                                     |

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Overhang deflection criteria: LL (2L/480) and TL (0.2").

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge<sup>TM</sup> Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro<sup>™</sup> Rating include: 5/8" Gypsum ceiling.

|                               | Bearing Length |                     |             | Loads to Supports (lbs) |            |      |          |             |
|-------------------------------|----------------|---------------------|-------------|-------------------------|------------|------|----------|-------------|
| Supports                      | Total          | Available           | Required    | Dead                    | Floor Live | Snow | Factored | Accessories |
| 1 - Hanger on 11 7/8" HF beam | 5.00"          | Hanger <sup>1</sup> | 1.75" / - 2 | 58                      | 442/-27    | -56  | 500/-4   | See note 1  |
| 2 - Stud wall - HF            | 5.50"          | 5.50"               | 3.62"       | 958                     | 1005       | 616  | 2174     | Blocking    |

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

+  $\ensuremath{^2}$  Required Bearing Length / Required Bearing Length with Web Stiffeners

| Bracing Intervals | Comments  |
|-------------------|-----------|
| 4' 6" o/c         |           |
| 3' 7" o/c         |           |
|                   | 4' 6" o/c |

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

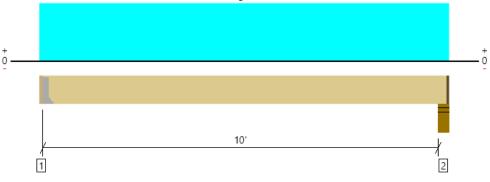
•Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-Tie |               |             |               |                |                  |             |  |
|-------------------------------|---------------|-------------|---------------|----------------|------------------|-------------|--|
| Support                       | Model         | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |  |
| 1 - Face Mount Hanger         | IUS1.81/11.88 | 2.00"       | N/A           | 10-10dx1.5     | 2-Strong-Grip    |             |  |
|                               |               |             |               |                |                  |             |  |

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                   |                 |         | Dead   | Floor Live | Snow   |               |
|-------------------|-----------------|---------|--------|------------|--------|---------------|
| Vertical Loads    | Location        | Spacing | (0.90) | (1.00)     | (1.15) | Comments      |
| 1 - Uniform (PSF) | 0 to 17' 8 1/2" | 16"     | 12.0   | 40.0       | -      | Default Load  |
| 2 - Point (PLF)   | 17' 8 1/2"      | 16"     | 220.0  | -          | -      | Exterior Wall |
| 3 - Point (PLF)   | 17' 8 1/2"      | 16"     | 105.0  | 340.0      |        | Second Floor  |
| 4 - Point (PLF)   | 17' 8 1/2"      | 16"     | 225.0  | -          | 420.0  | Roof          |

| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>OCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |






### First Floor, Deck Joists 1 piece(s) 2 x 8 SPF No.1/No.2 @ 16" OC







All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results             | Actual @ Location | Allowed     | Result         | LDF  | Load: Combination (Pattern) |
|----------------------------|-------------------|-------------|----------------|------|-----------------------------|
| Member Reaction (lbs)      | 504 @ 1 3/4"      | 956 (1.50") | Passed (53%)   |      | 1.0 D + 1.0 L (All Spans)   |
| Shear (lbs)                | 444 @ 9"          | 979         | Passed (45%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Moment (Ft-lbs)            | 1271 @ 5' 2 1/4"  | 1322        | Passed (96%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Live Load Defl. (in)       | 0.279 @ 5' 2 1/4" | 0.336       | Passed (L/434) |      | 1.0 D + 1.0 L (All Spans)   |
| Total Load Defl. (in)      | 0.349 @ 5' 2 1/4" | 0.504       | Passed (L/347) |      | 1.0 D + 1.0 L (All Spans)   |
| TJ-Pro <sup>™</sup> Rating | N/A               | N/A         | N/A            |      | N/A                         |

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

|                                         | Bearing Length |                     |          | Loads to Supports (lbs) |            |          |                  |
|-----------------------------------------|----------------|---------------------|----------|-------------------------|------------|----------|------------------|
| Supports                                | Total          | Available           | Required | Dead                    | Floor Live | Factored | Accessories      |
| 1 - Hanger on 7 1/4" HF ledgerOnMasonry | 1.75"          | Hanger <sup>1</sup> | 1.50"    | 104                     | 415        | 519      | See note 1       |
| 2 - Stud wall - HF                      | 5.50"          | 4.25"               | 1.50"    | 108                     | 433        | 542      | 1 1/4" Rim Board |

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing                                           | Bracing Intervals | Comments |  |  |  |
|-----------------------------------------------------------|-------------------|----------|--|--|--|
| Top Edge (Lu)                                             | 3' o/c            |          |  |  |  |
| Bottom Edge (Lu)                                          | 10' 4" o/c        |          |  |  |  |
| Maximum allowable bracing intervale based on applied load |                   |          |  |  |  |

Maximum allowable bracing intervals based on applied load.

| Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories           | Connector: Simpson Strong-Tie |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|-------------------------------|--|--|--|--|--|--|--|
| 5 TF                                                                                          |                               |  |  |  |  |  |  |  |
| 1 - Face Mount Hanger         LUS26         1.75"         N/A         4-10dx1.5         3-10d |                               |  |  |  |  |  |  |  |

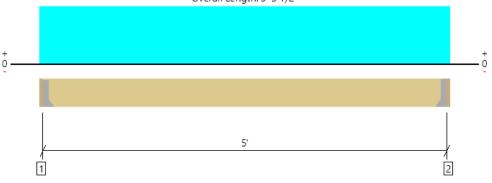
• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                   |                 |         | Dead   | Floor Live |              |
|-------------------|-----------------|---------|--------|------------|--------------|
| Vertical Load     | Location (Side) | Spacing | (0.90) | (1.00)     | Comments     |
| 1 - Uniform (PSF) | 0 to 10' 7 1/4" | 16"     | 15.0   | 60.0       | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                        | Job Notes |  |
|-------------------------------------------------------------------|-----------|--|
| Travis Michaud<br>OCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |  |



### First Floor, Zen Garden Joists 1 piece(s) 2 x 8 SPF No.1/No.2 @ 16" OC

#### Overall Length: 5' 3 1/2"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results             | Actual @ Location | Allowed     | Result          | LDF  | Load: Combination (Pattern) |
|----------------------------|-------------------|-------------|-----------------|------|-----------------------------|
| Member Reaction (lbs)      | 440 @ 1 3/4"      | 956 (1.50") | Passed (46%)    |      | 1.0 D + 1.0 L (All Spans)   |
| Shear (lbs)                | 334 @ 9"          | 979         | Passed (34%)    | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Moment (Ft-lbs)            | 550 @ 2' 7 3/4"   | 1322        | Passed (42%)    | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Live Load Defl. (in)       | 0.028 @ 2' 7 3/4" | 0.167       | Passed (L/999+) |      | 1.0 D + 1.0 L (All Spans)   |
| Total Load Defl. (in)      | 0.037 @ 2' 7 3/4" | 0.250       | Passed (L/999+) |      | 1.0 D + 1.0 L (All Spans)   |
| TJ-Pro <sup>™</sup> Rating | N/A               | N/A         | N/A             |      | N/A                         |

Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

· Applicable calculations are based on NDS.

· No composite action between deck and joist was considered in analysis.

|                                         | Bearing Length |                     |          | Loads to Supports (lbs) |            |          |             |
|-----------------------------------------|----------------|---------------------|----------|-------------------------|------------|----------|-------------|
| Supports                                | Total          | Available           | Required | Dead                    | Floor Live | Factored | Accessories |
| 1 - Hanger on 7 1/4" HF ledgerOnMasonry | 1.75"          | Hanger <sup>1</sup> | 1.50"    | 113                     | 353        | 466      | See note 1  |
| 2 - Hanger on 7 1/4" HE ledgerOnMasonry | 1 75"          | Hanger <sup>1</sup> | 1 50"    | 113                     | 353        | 466      | See note 1  |

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 5' o/c            |          |
| Bottom Edge (Lu) | 5' o/c            |          |

•Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-Tie |       |             |               |                |                  |             |  |
|-------------------------------|-------|-------------|---------------|----------------|------------------|-------------|--|
| Support                       | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |  |
| 1 - Face Mount Hanger         | LU26  | 1.50"       | N/A           | 6-10dx1.5      | 4-10dx1.5        |             |  |
| 2 - Face Mount Hanger         | LU26  | 1.50"       | N/A           | 6-10dx1.5      | 4-10dx1.5        |             |  |

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                   |                 |         | Dead   | Floor Live |              |
|-------------------|-----------------|---------|--------|------------|--------------|
| Vertical Load     | Location (Side) | Spacing | (0.90) | (1.00)     | Comments     |
| 1 - Uniform (PSF) | 0 to 5' 3 1/2"  | 16"     | 32.0   | 100.0      | Default Load |

#### Weyerhaeuser Notes

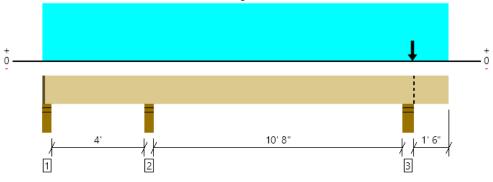
Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                        | Job Notes |  |
|-------------------------------------------------------------------|-----------|--|
| Travis Michaud<br>OCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |  |

7/29/2022 2:54:01 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.2.2 File Name: 22252.01 - 42255 Intrachat Page 7 / 75


System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD





## First Floor, 1B1: Grid E 1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL

#### Overall Length: 17' 4 1/2"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location   | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|---------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 5308 @ 4' 6 3/4"    | 6694 (4.50") | Passed (79%)    |      | 1.0 D + 1.0 L (Adj Spans)   |
| Shear (lbs)           | 2500 @ 5' 8 7/8"    | 8590         | Passed (29%)    | 1.00 | 1.0 D + 1.0 L (Adj Spans)   |
| Moment (Ft-lbs)       | -5366 @ 4' 6 3/4"   | 15953        | Passed (34%)    | 1.00 | 1.0 D + 1.0 L (Adj Spans)   |
| Live Load Defl. (in)  | 0.075 @ 10' 7 3/16" | 0.277        | Passed (L/999+) |      | 1.0 D + 1.0 L (Alt Spans)   |
| Total Load Defl. (in) | 0.140 @ 10' 7 1/16" | 0.554        | Passed (L/951)  |      | 1.0 D + 1.0 L (Alt Spans)   |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240)

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• -633 lbs uplift at support located at 3". Strapping or other restraint may be required.

|                     | Bearing Length |           |          |      | Loads to Sup |      |          |                  |
|---------------------|----------------|-----------|----------|------|--------------|------|----------|------------------|
| Supports            | Total          | Available | Required | Dead | Floor Live   | Snow | Factored | Accessories      |
| 1 - Stud wall - HF  | 4.50"          | 3.25"     | 1.50"    | -43  | 571/-590     | -    | 528/-633 | 1 1/4" Rim Board |
| 2 - Stud wall - SPF | 4.50"          | 4.50"     | 3.57"    | 2556 | 2752         | -    | 5308     | None             |
| 3 - Stud wall - HF  | 5.50"          | 5.50"     | 4.21"    | 2866 | 1550         | 2590 | 5971     | Blocking         |

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing                                           | Bracing Intervals | Comments |  |  |  |  |  |
|-----------------------------------------------------------|-------------------|----------|--|--|--|--|--|
| Top Edge (Lu)                                             | 17' 3" o/c        |          |  |  |  |  |  |
| Bottom Edge (Lu)                                          | 17' 3" o/c        |          |  |  |  |  |  |
| Maximum allowable bracing intervale based on applied load |                   |          |  |  |  |  |  |

Maximum allowable bracing intervals based on applied load.

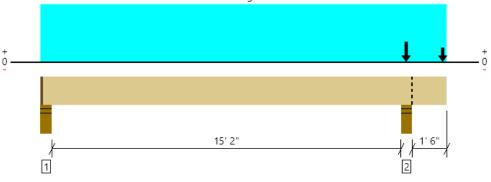
| Vertical Loads        | Location (Side)         | Tributary Width | Dead<br>(0.90) | Floor Live<br>(1.00) | Snow<br>(1.15) | Comments                               |
|-----------------------|-------------------------|-----------------|----------------|----------------------|----------------|----------------------------------------|
| 0 - Self Weight (PLF) | 1 1/4" to 17' 4 1/2"    | N/A             | 13.0           |                      |                |                                        |
| 1 - Uniform (PSF)     | 0 to 17' 4 1/2" (Front) | 6'              | 12.0           | 40.0                 | -              | Default Load                           |
| 2 - Uniform (PSF)     | 0 to 17' 4 1/2" (Front) | 18'             | 8.0            | -                    | -              | Wall                                   |
| 3 - Point (lb)        | 15' 10" (Front)         | N/A             | 1401           | -                    | 2590           | Linked from: RB12<br>Grid E, Support 2 |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>QCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |








## First Floor, 1B1: Grid E + SW 1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL

#### Overall Length: 17' 7"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location  | Allowed       | Result         | LDF  | Load: Combination (Pattern)                      |
|-----------------------|--------------------|---------------|----------------|------|--------------------------------------------------|
| Member Reaction (lbs) | 8592 @ 15' 10 1/4" | 11694 (5.50") | Passed (73%)   |      | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |
| Shear (lbs)           | 3156 @ 14' 7 5/8"  | 12053         | Passed (26%)   | 1.00 | 1.0 D + 1.0 L (All Spans)                        |
| Moment (Ft-lbs)       | 14142 @ 8' 9/16"   | 29854         | Passed (47%)   | 1.00 | 1.0 D + 1.0 L (Alt Spans)                        |
| Live Load Defl. (in)  | 0.207 @ 8' 1 1/8"  | 0.388         | Passed (L/902) |      | 1.0 D + 1.0 L (Alt Spans)                        |
| Total Load Defl. (in) | 0.404 @ 8' 15/16"  | 0.776         | Passed (L/462) |      | 1.0 D + 1.0 L (Alt Spans)                        |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Overhang deflection criteria: LL (2L/480) and TL (2L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

|                    | Bearing Length |           |          | Loads to Supports (lbs) |            |      |      |            |          |                  |
|--------------------|----------------|-----------|----------|-------------------------|------------|------|------|------------|----------|------------------|
| Supports           | Total          | Available | Required | Dead                    | Floor Live | Snow | Wind | Seismic    | Factored | Accessories      |
| 1 - Stud wall - HF | 5.50"          | 4.25"     | 1.78"    | 1881                    | 1943       | -    | -65  | 220/-220   | 3824     | 1 1/4" Rim Board |
| 2 - Stud wall - HF | 5.50"          | 5.50"     | 4.04"    | 3658                    | 2301       | 2590 | 714  | 2410/-2410 | 8592     | Blocking         |

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing                                           | Bracing Intervals | Comments |  |  |  |  |  |
|-----------------------------------------------------------|-------------------|----------|--|--|--|--|--|
| Top Edge (Lu)                                             | 17' 6" o/c        |          |  |  |  |  |  |
| Bottom Edge (Lu)                                          | 17' 6" o/c        |          |  |  |  |  |  |
| Maximum allowable bracing intervals based on applied load |                   |          |  |  |  |  |  |

imum allowable bracing intervals based on applied load

|                       |                     |                 | Dead   | Floor Live | Snow   | Wind   | Seismic |                                        |
|-----------------------|---------------------|-----------------|--------|------------|--------|--------|---------|----------------------------------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.00)     | (1.15) | (1.60) | (1.60)  | Comments                               |
| 0 - Self Weight (PLF) | 1 1/4" to 17' 7"    | N/A             | 19.5   |            |        |        |         |                                        |
| 1 - Uniform (PSF)     | 0 to 17' 7" (Front) | 6'              | 12.0   | 40.0       | -      | -      |         | Default Load                           |
| 2 - Uniform (PSF)     | 0 to 17' 7" (Front) | 18'             | 8.0    | -          | -      | -      |         | Wall                                   |
| 3 - Point (lb)        | 17' 5" (Front)      | N/A             | -      | -          | -      | 649    | 2190    | SW Grid 15                             |
| 4 - Point (lb)        | 15' 10" (Front)     | N/A             | 1401   | -          | 2590   | -      | -       | Linked from: RB12<br>Grid E, Support 2 |

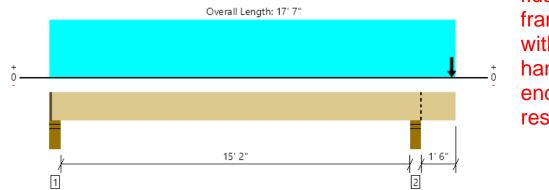
#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this broughts will be in accordance will be in accordance in weight ades product besign orders and publicle out the software is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Travis Michaud QCE (206) 957-3917 tmichaud@quantumce.com




7/29/2022 2:54:01 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.2.2 File Name: 22252.01 - 42255 Intrachat Page 9 / 75



#### First Floor, 1B2: SW Transfer

1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL

An excessive uplift of -1854 lbs at support located at 15' 10 1/4" failed this product.



ok, beam flush framed with joist hanger at end to resist uplift.

FAILE

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location   | Allowed      | Result          | LDF  | Load: Combination (Pattern)                      |
|-----------------------|---------------------|--------------|-----------------|------|--------------------------------------------------|
| Member Reaction (lbs) | 3341 @ 15' 10 1/4"  | 7796 (5.50") | Passed (43%)    |      | 1.0 D + 0.7 E (All Spans)                        |
| Shear (lbs)           | 2241 @ 17' 7/8"     | 13743        | Passed (16%)    | 1.60 | 1.0 D + 0.7 E (All Spans)                        |
| Moment (Ft-lbs)       | 4053 @ 8' 5/16"     | 15953        | Passed (25%)    | 1.00 | 1.0 D + 1.0 L (Alt Spans)                        |
| Live Load Defl. (in)  | 0.090 @ 17' 7"      | 0.200        | Passed (2L/464) |      | 1.0 D + 0.7 E (All Spans)                        |
| Total Load Defl. (in) | 0.315 @ 8' 4 11/16" | 0.776        | Passed (L/591)  |      | 1.0 D - 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

| <ul> <li>Deflection criteria: LL (L/480) and TL (L/240).</li> </ul> |
|---------------------------------------------------------------------|
| • Overhang deflection criteria: LL (0.2") and TL (2L/240).          |

• Overhang denection citteria. EE (0.2.) and TE (21/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

|                    | Bearing Length |           |          |      | Loads      |      |            |                |                  |
|--------------------|----------------|-----------|----------|------|------------|------|------------|----------------|------------------|
| Supports           | Total          | Available | Required | Dead | Floor Live | Wind | Seismic    | Factored       | Accessories      |
| 1 - Stud wall - HF | 5.50"          | 4.25"     | 1.50"    | 774  | 324        | -109 | 315/-315   | 1180           | 1 1/4" Rim Board |
| 2 - Stud wall - HF | 5.50"          | 5.50"     | 2.36"    | 930  | 383        | 1191 | 3445/-3445 | 3341/-<br>1854 | Blocking         |

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 17' 6" o/c        |          |
| Bottom Edge (Lu) | 17' 6" o/c        |          |

•Maximum allowable bracing intervals based on applied load.

|                       |                     |                 | Dead   | Floor Live | Wind   | Seismic |              |
|-----------------------|---------------------|-----------------|--------|------------|--------|---------|--------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.00)     | (1.60) | (1.60)  | Comments     |
| 0 - Self Weight (PLF) | 1 1/4" to 17' 7"    | N/A             | 13.0   |            |        |         |              |
| 1 - Uniform (PSF)     | 0 to 17' 7" (Front) | 1'              | 12.0   | 40.0       | -      | -       | Default Load |
| 2 - Uniform (PSF)     | 0 to 17' 7" (Front) | 9'              | 8.0    | -          | -      | -       | Wall         |
| 3 - Point (lb)        | 17' 5" (Front)      | N/A             | -      | -          | 1082   | 3130    |              |

#### Weyerhaeuser Notes

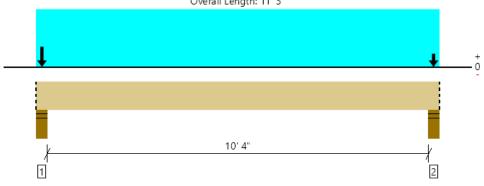
Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Travis Michaud
 OCE

 (206) 957-3917
 tmichaud@quantumce.com




7/29/2022 2:54:01 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.2.2 File Name: 22252.01 - 42255 Intrachat Page 10 / 75



## First Floor, 1B3: Grid 11 1 piece(s) 5 1/8" x 15" 24F-V8 DF Glulam

#### Overall Length: 11' 3"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed       | Result          | LDF  | Load: Combination (Pattern)         |
|-----------------------|-------------------|---------------|-----------------|------|-------------------------------------|
| Member Reaction (lbs) | 11807 @ 4"        | 11980 (5.50") | Passed (99%)    |      | 1.0 D + 0.75 L + 0.75 S (All Spans) |
| Shear (lbs)           | 4382 @ 1' 8 1/2"  | 13581         | Passed (32%)    | 1.00 | 1.0 D + 1.0 L (All Spans)           |
| Pos Moment (Ft-Ibs)   | 15663 @ 5' 7 1/2" | 38438         | Passed (41%)    | 1.00 | 1.0 D + 1.0 L (All Spans)           |
| Live Load Defl. (in)  | 0.074 @ 5' 7 1/2" | 0.265         | Passed (L/999+) |      | 1.0 D + 1.0 L (All Spans)           |
| Total Load Defl. (in) | 0.122 @ 5' 7 1/2" | 0.529         | Passed (L/999+) |      | 1.0 D + 1.0 L (All Spans)           |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

0

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 10' 7".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

Applicable calculations are based on NDS.

|                                              | Bearing Length |                |               | Loads to Sup    |               |              |          |             |
|----------------------------------------------|----------------|----------------|---------------|-----------------|---------------|--------------|----------|-------------|
| Supports                                     | Total          | Available      | Required      | Dead            | Floor Live    | Snow         | Factored | Accessories |
| 1 - Stud wall - SPF                          | 5.50"          | 5.50"          | 5.42"         | 5401            | 3825          | 4717         | 11807    | Blocking    |
| 2 - Stud wall - SPF                          | 5.50"          | 5.50"          | 3.86"         | 3759            | 3825          | 2386         | 8417     | Blocking    |
| Blocking Panels are assumed to carry no load | annlied dire   | ctly above the | m and the ful | l load is annli | ed to the men | her heina de | signed   | •           |

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 11' 3" o/c        |          |
| Bottom Edge (Lu) | 11' 3" o/c        |          |

•Maximum allowable bracing intervals based on applied load.

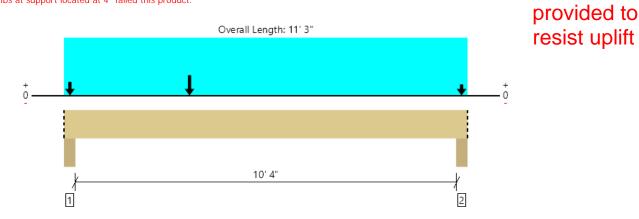
|                       |                     |                 | Dead   | Floor Live | Snow   |                                                    |
|-----------------------|---------------------|-----------------|--------|------------|--------|----------------------------------------------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.00)     | (1.15) | Comments                                           |
| 0 - Self Weight (PLF) | 0 to 11' 3"         | N/A             | 18.7   |            |        |                                                    |
| 1 - Uniform (PSF)     | 0 to 11' 3" (Front) | 8'              | 12.0   | 40.0       |        | Default Load                                       |
| 2 - Uniform (PSF)     | 0 to 11' 3" (Front) | 18'             | 12.0   | -          |        | Wall                                               |
| 3 - Uniform (PSF)     | 0 to 11' 3" (Front) | 9'              | 12.0   | 40.0       |        | Second Floor                                       |
| 4 - Point (Ib)        | 2" (Front)          | N/A             | 2933   | -          | 4717   | Linked from: RB3:<br>Cantilever Beam,<br>Support 1 |
| 5 - Point (Ib)        | 11' 1" (Front)      | N/A             | 1291   | -          | 2386   | Linked from: RB4:<br>Support Beam,<br>Support 1    |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>OCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |




7/29/2022 2:54:01 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.2.2 File Name: 22252.01 - 42255 Intrachat Page 11 / 75



#### First Floor, 1B3: Grid 11 + SW 1 piece(s) 5 1/8" x 15" 24F-V8 DF Glulam

An excessive uplift of -3409 lbs at support located at 4" failed this product.



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location   | Allowed       | Result         | LDF  | Load: Combination (Pattern)                      |
|-----------------------|---------------------|---------------|----------------|------|--------------------------------------------------|
| Member Reaction (lbs) | 16794 @ 4"          | 18322 (5.50") | Passed (92%)   |      | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |
| Shear (lbs)           | 8702 @ 1' 8 1/2"    | 21730         | Passed (40%)   | 1.60 | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |
| Pos Moment (Ft-Ibs)   | 26932 @ 3' 6"       | 61500         | Passed (44%)   | 1.60 | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |
| Neg Moment (Ft-Ibs)   | -17964 @ 3' 6"      | 61500         | Passed (29%)   | 1.60 | 0.6 D - 0.7 E (All Spans)                        |
| Live Load Defl. (in)  | 0.149 @ 5' 3 11/16" | 0.265         | Passed (L/854) |      | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |
| Total Load Defl. (in) | 0.196 @ 5' 4 5/8"   | 0.529         | Passed (L/647) |      | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 10' 7".

• Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 10' 7".

• -584 lbs uplift at support located at 10' 11". Strapping or other restraint may be required.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• Applicable calculations are based on NDS.

|                 | Bearing Length |           |          | Loads to Supports (lbs) |            |      |      |            |                 |             |
|-----------------|----------------|-----------|----------|-------------------------|------------|------|------|------------|-----------------|-------------|
| Supports        | Total          | Available | Required | Dead                    | Floor Live | Snow | Wind | Seismic    | Factored        | Accessories |
| 1 - Column - HF | 5.50"          | 5.50"     | 5.04"    | 5401                    | 3825       | 4717 | 3271 | 9498/-9498 | 16794/-<br>3409 | Blocking    |
| 2 - Column - HF | 5.50"          | 5.50"     | 3.17"    | 3759                    | 3825       | 2386 | 1396 | 4056/-4056 | 10546/-<br>584  | Blocking    |

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 11' 3" o/c        |          |
| Bottom Edge (Lu) | 11' 3" o/c        |          |

•Maximum allowable bracing intervals based on applied load.

|                       |                     |                 | Dead   | Floor Live | Snow   | Wind   | Seismic |                                                    |
|-----------------------|---------------------|-----------------|--------|------------|--------|--------|---------|----------------------------------------------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.00)     | (1.15) | (1.60) | (1.60)  | Comments                                           |
| 0 - Self Weight (PLF) | 0 to 11' 3"         | N/A             | 18.7   |            |        |        |         |                                                    |
| 1 - Uniform (PSF)     | 0 to 11' 3" (Front) | 8'              | 12.0   | 40.0       | -      | -      | -       | Default Load                                       |
| 2 - Uniform (PSF)     | 0 to 11' 3" (Front) | 18'             | 12.0   | -          | -      | -      | -       | Wall                                               |
| 3 - Uniform (PSF)     | 0 to 11' 3" (Front) | 9'              | 12.0   | 40.0       | -      | -      | -       | Second Floor                                       |
| 4 - Point (lb)        | 3' 6" (Front)       | N/A             | -      | -          | -      | 4667   | 13554   | SW Grid 11                                         |
| 5 - Point (lb)        | 2" (Front)          | N/A             | 2933   | -          | 4717   | -      | -       | Linked from: RB3:<br>Cantilever Beam,<br>Support 1 |
| 6 - Point (lb)        | 11' 1" (Front)      | N/A             | 1291   | -          | 2386   | -      | -       | Linked from: RB4:<br>Support Beam,<br>Support 1    |

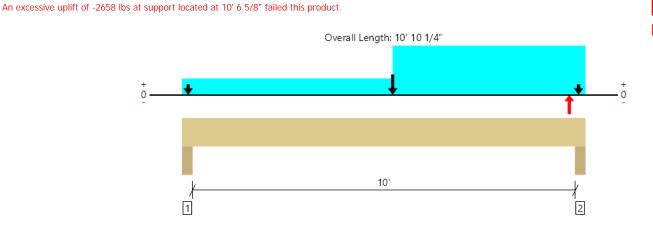
| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>QCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |



7/29/2022 2:54:01 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.2.2 File Name: 22252.01 - 42255 Intrachat Page 12 / 75



ok, strap




## First Floor, 1B4: Grid 1 + SW

## 1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL



## ok, strap provided to resist uplift



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location  | Allowed       | Result         | LDF  | Load: Combination (Pattern)                      |
|-----------------------|--------------------|---------------|----------------|------|--------------------------------------------------|
| Member Reaction (lbs) | 11406 @ 10' 6 5/8" | 16816 (5.13") | Passed (68%)   |      | 1.0 D - 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |
| Shear (lbs)           | 7616 @ 9' 5 1/4"   | 19285         | Passed (39%)   | 1.60 | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |
| Moment (Ft-lbs)       | 32979 @ 5' 8"      | 47766         | Passed (69%)   | 1.60 | 1.0 D + 0.7 E (All Spans)                        |
| Live Load Defl. (in)  | -0.292 @ 5' 8"     | 0.342         | Passed (L/421) |      | 0.6 D - 0.7 E (All Spans)                        |
| Total Load Defl. (in) | 0.372 @ 5' 8"      | 0.512         | Passed (L/331) |      | 1.0 D + 0.7 E (All Spans)                        |

iystem : Floor Member Type : Flush Beam Huilding Use : Residential Huilding Code : IBC 2015 Design Methodology : ASD

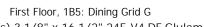
• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

An excessive uplift of -3057 lbs at support located at 3 5/8" failed this product.

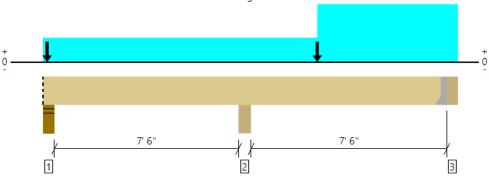
|                  | Bearing Length |           |          | Loads to Supports (lbs) |            |      |       |            |                 |             |
|------------------|----------------|-----------|----------|-------------------------|------------|------|-------|------------|-----------------|-------------|
| Supports         | Total          | Available | Required | Dead                    | Floor Live | Snow | Wind  | Seismic    | Factored        | Accessories |
| 1 - Column - SPF | 5.13"          | 5.13"     | 2.99"    | 3222                    | 434        | 3352 | 3271  | 7130/-7130 | 9805/-<br>3057  | None        |
| 2 - Column - SPF | 5.13"          | 5.13"     | 3.48"    | 3888                    | 434        | 4599 | -3271 | 7130/-7130 | 11406/-<br>2658 | None        |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 10' 10" o/c       |          |
| Bottom Edge (Lu) | 10' 10" o/c       |          |
|                  | 10' 10" o/c       |          |


•Maximum allowable bracing intervals based on applied load.

|                       |                              |                 | Dead   | Floor Live | Snow   | Wind   | Seismic |                                                 |
|-----------------------|------------------------------|-----------------|--------|------------|--------|--------|---------|-------------------------------------------------|
| Vertical Loads        | Location (Side)              | Tributary Width | (0.90) | (1.00)     | (1.15) | (1.60) | (1.60)  | Comments                                        |
| 0 - Self Weight (PLF) | 0 to 10' 10 1/4"             | N/A             | 19.5   |            |        |        |         |                                                 |
| 1 - Uniform (PSF)     | 0 to 10' 10 1/4" (Front)     | 2'              | 12.0   | 40.0       | -      | -      | -       | Default Load                                    |
| 2 - Uniform (PSF)     | 0 to 10' 10 1/4" (Front)     | 18'             | 12.0   | -          | -      | -      | -       | Wall                                            |
| 3 - Point (Ib)        | 5' 8" (Front)                | N/A             | 550    | -          | 1000   | -      | -       | RB3                                             |
| 4 - Point (Ib)        | 5' 8" (Front)                | N/A             | -      | -          | -      | 7058   | 15385   | SW Grid 1                                       |
| 5 - Point (Ib)        | 10' 5" (Front)               | N/A             | -      | -          | -      | -7058  | -15385  | SW Grid 1                                       |
| 6 - Uniform (PSF)     | 5' 8" to 10' 10 1/4" (Front) | 14'             | 16.0   | -          | 30.0   | -      | -       | Roof                                            |
| 7 - Point (lb)        | 2" (Front)                   | N/A             | 1291   | -          | 2386   | -      | -       | Linked from: RB4:<br>Support Beam,<br>Support 1 |
| 8 - Point (lb)        | 10' 8" (Front)               | N/A             | 1291   | -          | 2386   | -      | -       | Linked from: RB4:<br>Support Beam,<br>Support 2 |

| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>QCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |








## 1 piece(s) 3 1/8" x 16 1/2" 24F-V4 DF Glulam





All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location    | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|----------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 4450 @ 15' 11 1/2"   | 4450 (2.19") | Passed (100%)   |      | 1.0 D + 1.0 L (Alt Spans)   |
| Shear (lbs)           | 6054 @ 9' 10"        | 9109         | Passed (66%)    | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Pos Moment (Ft-Ibs)   | 9932 @ 11' 5 15/16"  | 28359        | Passed (35%)    | 1.00 | 1.0 D + 1.0 L (Alt Spans)   |
| Neg Moment (Ft-Ibs)   | -8189 @ 8' 2 1/2"    | 21860        | Passed (37%)    | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Live Load Defl. (in)  | 0.036 @ 12' 1 13/16" | 0.194        | Passed (L/999+) |      | 1.0 D + 1.0 L (Alt Spans)   |
| Total Load Defl. (in) | 0.046 @ 12' 1 15/16" | 0.387        | Passed (L/999+) |      | 1.0 D + 1.0 L (Alt Spans)   |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

- Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 6' 7 15/16".

• Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 6' 1 7/8".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

• Applicable calculations are based on NDS.

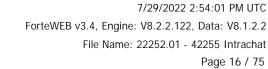
|                               | Bearing Length |                     |          | Loads | to Supports |          |             |
|-------------------------------|----------------|---------------------|----------|-------|-------------|----------|-------------|
| Supports                      | Total          | Available           | Required | Dead  | Floor Live  | Factored | Accessories |
| 1 - Stud wall - HF            | 5.50"          | 5.50"               | 4.99"    | 1342  | 4967/-635   | 6309     | Blocking    |
| 2 - Column - SPF              | 6.00"          | 6.00"               | 4.66"    | 2192  | 7266        | 9459     | None        |
| 3 - Hanger on 16 1/2" DF beam | 5.50"          | Hanger <sup>1</sup> | 2.19"    | 1091  | 3811        | 4902     | See note 1  |

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

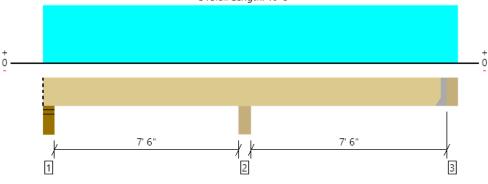
| Lateral Bracing                                           | Bracing Intervals | Comments |  |  |  |  |
|-----------------------------------------------------------|-------------------|----------|--|--|--|--|
| Top Edge (Lu)                                             | 16' o/c           |          |  |  |  |  |
| Bottom Edge (Lu) 16' o/c                                  |                   |          |  |  |  |  |
| Maximum allowable brasing intervals based on applied land |                   |          |  |  |  |  |


Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-Tie                                                                                      |             |             |               |                |                  |             |  |
|--------------------------------------------------------------------------------------------------------------------|-------------|-------------|---------------|----------------|------------------|-------------|--|
| Support                                                                                                            | Model       | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |  |
| 3 - Face Mount Hanger                                                                                              | HGUS3.25/12 | 4.00"       | N/A           | 56-10d         | 20-10d           |             |  |
| <ul> <li>Defer to manufacturer notes and instructions for proper installation and use of all connectors</li> </ul> |             |             |               |                |                  |             |  |

Weyerhaeuser

Refer to manufacturer notes and instructions for proper installation and use of all connectors.


| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>OCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |





### First Floor, 1B6: Dining Grid E 1 piece(s) 3 1/8" x 16 1/2" 24F-V4 DF Glulam

#### Overall Length: 16' 5"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location  | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|--------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 3294 @ 15' 11 1/2" | 3294 (1.62") | Passed (100%)   |      | 1.0 D + 1.0 L (Alt Spans)   |
| Shear (lbs)           | 3316 @ 6' 7"       | 9109         | Passed (36%)    | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Pos Moment (Ft-Ibs)   | 5552 @ 3' 7 3/4"   | 28359        | Passed (20%)    | 1.00 | 1.0 D + 1.0 L (Alt Spans)   |
| Neg Moment (Ft-Ibs)   | -7711 @ 8' 2 1/2"  | 21860        | Passed (35%)    | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Live Load Defl. (in)  | 0.021 @ 4' 7/8"    | 0.197        | Passed (L/999+) |      | 1.0 D + 1.0 L (Alt Spans)   |
| Total Load Defl. (in) | 0.026 @ 4'         | 0.394        | Passed (L/999+) |      | 1.0 D + 1.0 L (Alt Spans)   |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 6' 7 9/16".

• Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 3' 10 7/8".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

• Applicable calculations are based on NDS.

|                               | Bearing Length |                     | Loads    | to Supports |            |          |             |
|-------------------------------|----------------|---------------------|----------|-------------|------------|----------|-------------|
| Supports                      | Total          | Available           | Required | Dead        | Floor Live | Factored | Accessories |
| 1 - Stud wall - HF            | 5.50"          | 5.50"               | 2.91"    | 893         | 2793/-350  | 3687     | Blocking    |
| 2 - Column - SPF              | 6.00"          | 6.00"               | 4.86"    | 2642        | 7227       | 9869     | None        |
| 3 - Hanger on 16 1/2" DF beam | 5.50"          | Hanger <sup>1</sup> | 1.62"    | 900         | 2851/-34   | 3751     | See note 1  |

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

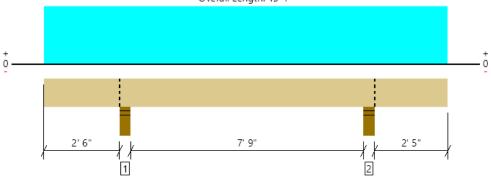
• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing                                            | Bracing Intervals | Comments |  |  |  |  |
|------------------------------------------------------------|-------------------|----------|--|--|--|--|
| Top Edge (Lu)                                              | 16' o/c           |          |  |  |  |  |
| Bottom Edge (Lu)                                           | 16' o/c           |          |  |  |  |  |
| -Maximum alloughte brasing intervals based on applied lead |                   |          |  |  |  |  |

Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-Tie |          |             |               |                |                  |             |  |  |
|-------------------------------|----------|-------------|---------------|----------------|------------------|-------------|--|--|
| Support                       | Model    | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |  |  |
| 3 - Face Mount Hanger         | THA218-2 | 1.75"       | N/A           | 22-16d         | 6-16d            |             |  |  |
|                               |          |             |               |                |                  |             |  |  |

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.


|                       |                       |                 | Dead   | Floor Live |                        |
|-----------------------|-----------------------|-----------------|--------|------------|------------------------|
| Vertical Loads        | Location (Side)       | Tributary Width | (0.90) | (1.00)     | Comments               |
| 0 - Self Weight (PLF) | 0 to 15' 11 1/2"      | N/A             | 12.5   |            |                        |
| 1 - Uniform (PSF)     | 0 to 16' 5" (Front)   | 3'              | 42.0   | 100.0      | Zen Garden Load        |
| 2 - Uniform (PSF)     | 11' to 16' 5" (Front) | 10'             | -      | -          | Wall Load              |
| 3 - Uniform (PSF)     | 0 to 16' 5" (Front)   | 11'             | 12.0   | 40.0       | Upper Level<br>Framing |

| ForteWEB Software Operator                                        | Job Notes |              |
|-------------------------------------------------------------------|-----------|--------------|
| Travis Michaud<br>QCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           | Weyerhaeuser |



### First Floor, 1B7: Zen Garden Grid D 1 piece(s) 5 1/8" x 9" 24F-V4 DF Glulam

#### Overall Length: 13' 7"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location   | Allowed       | Result         | LDF  | Load: Combination (Pattern) |
|-----------------------|---------------------|---------------|----------------|------|-----------------------------|
| Member Reaction (lbs) | 6178 @ 2' 8 3/4"    | 11980 (5.50") | Passed (52%)   |      | 1.0 D + 1.0 L (Adj Spans)   |
| Shear (lbs)           | 2977 @ 3' 8 1/2"    | 8149          | Passed (37%)   | 1.00 | 1.0 D + 1.0 L (Adj Spans)   |
| Pos Moment (Ft-Ibs)   | 6319 @ 6' 10 1/8"   | 13838         | Passed (46%)   | 1.00 | 1.0 D + 1.0 L (Alt Spans)   |
| Neg Moment (Ft-Ibs)   | -3215 @ 2' 8 3/4"   | 10666         | Passed (30%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Live Load Defl. (in)  | 0.109 @ 6' 10"      | 0.205         | Passed (L/901) |      | 1.0 D + 1.0 L (Alt Spans)   |
| Total Load Defl. (in) | 0.133 @ 6' 10 1/16" | 0.410         | Passed (L/743) |      | 1.0 D + 1.0 L (Alt Spans)   |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 7' 7 13/16".

• Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 3' 9 1/8".

· The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

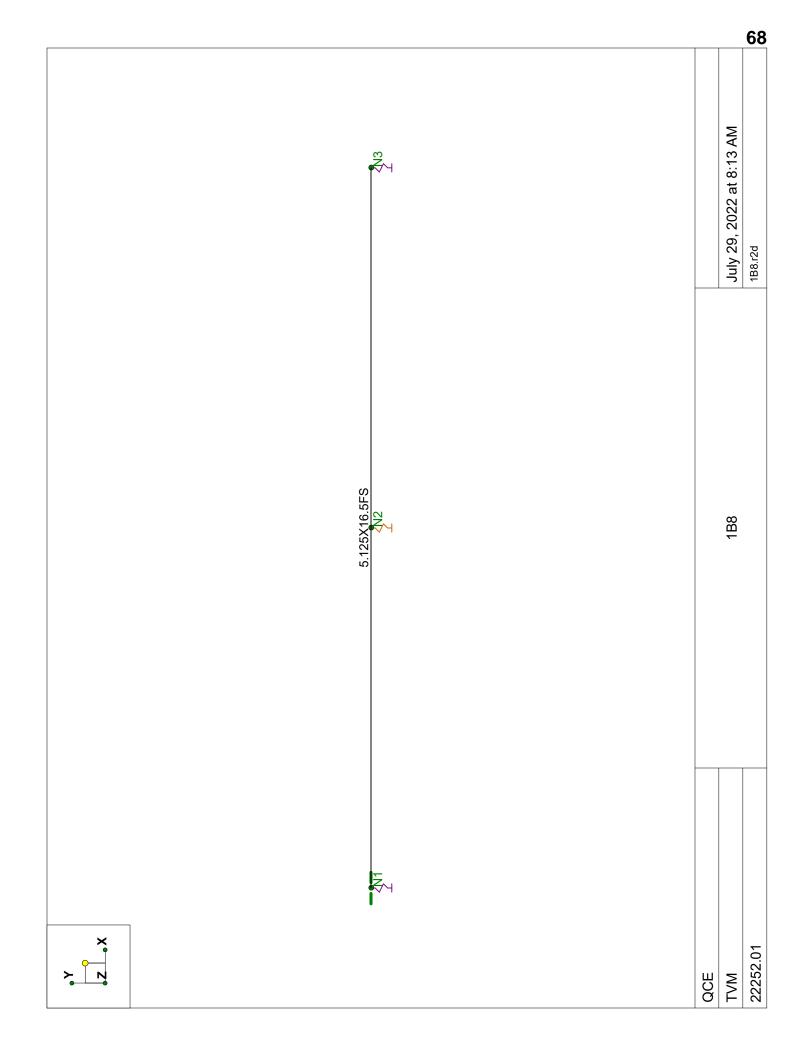
· Applicable calculations are based on NDS.

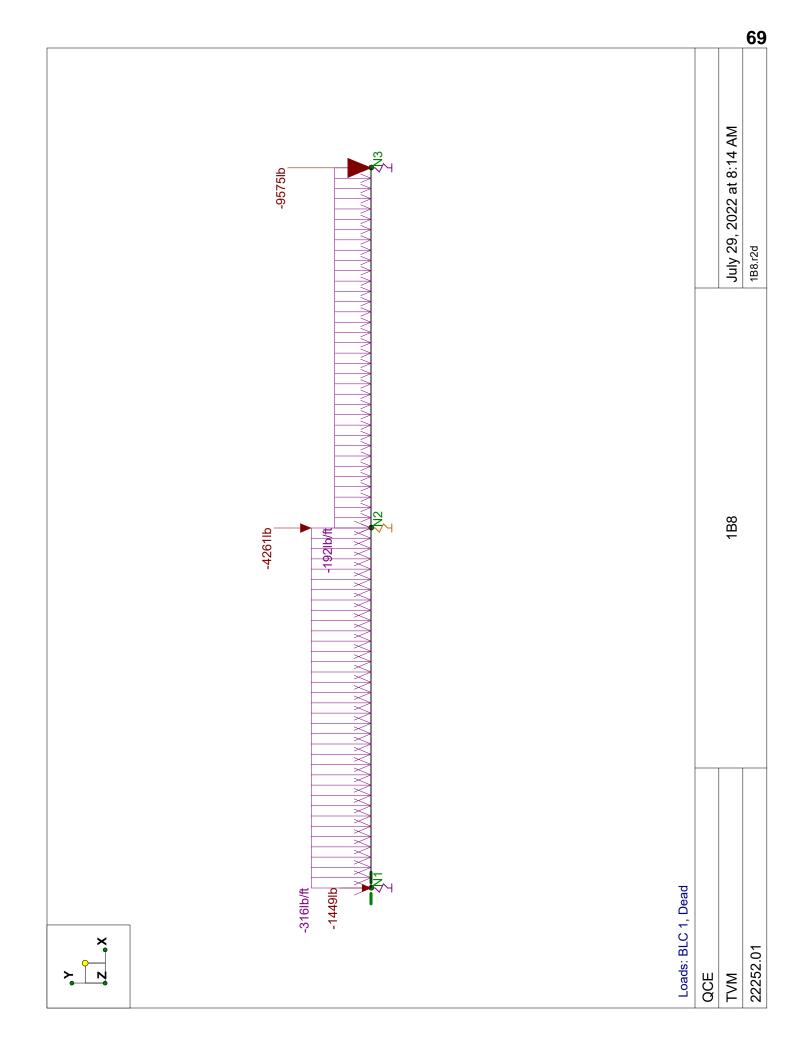
|                     | Bearing Length |           |          | Loads to Supports (lbs) |            |          |             |
|---------------------|----------------|-----------|----------|-------------------------|------------|----------|-------------|
| Supports            | Total          | Available | Required | Dead                    | Floor Live | Factored | Accessories |
| 1 - Stud wall - SPF | 5.50"          | 5.50"     | 2.84"    | 1806                    | 4372       | 6178     | Blocking    |
| 2 - Stud wall - SPF | 5.50"          | 5.50"     | 2.79"    | 1769                    | 4306       | 6075     | Blocking    |

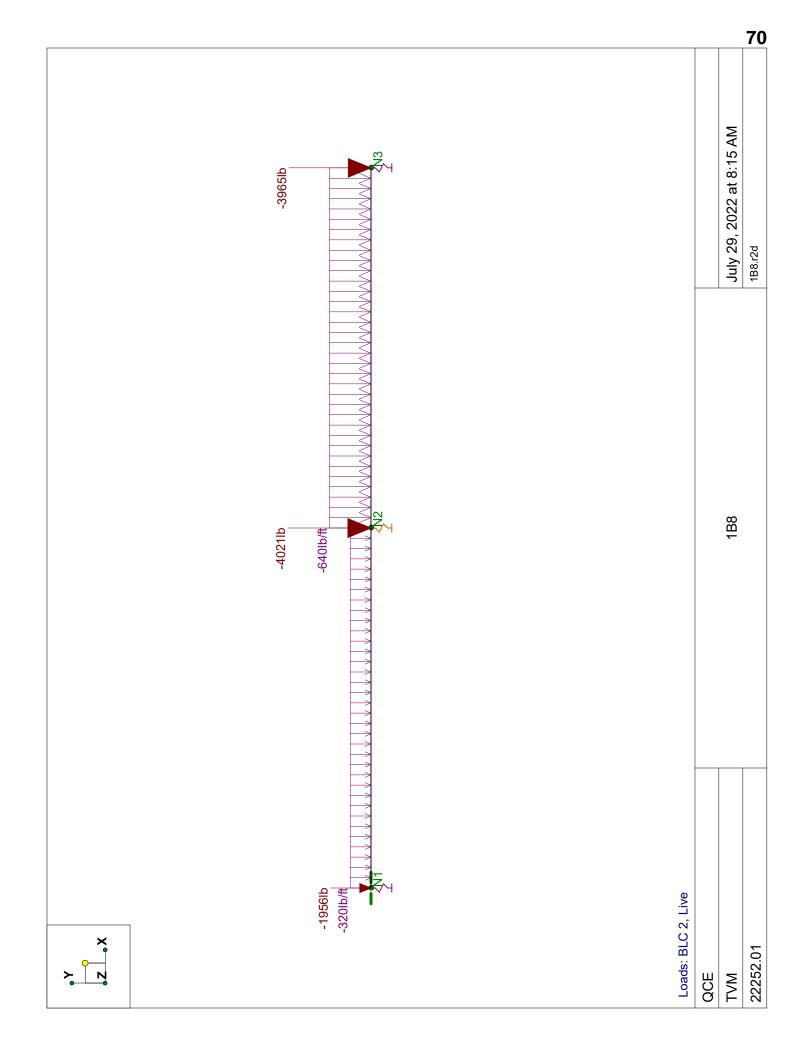
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

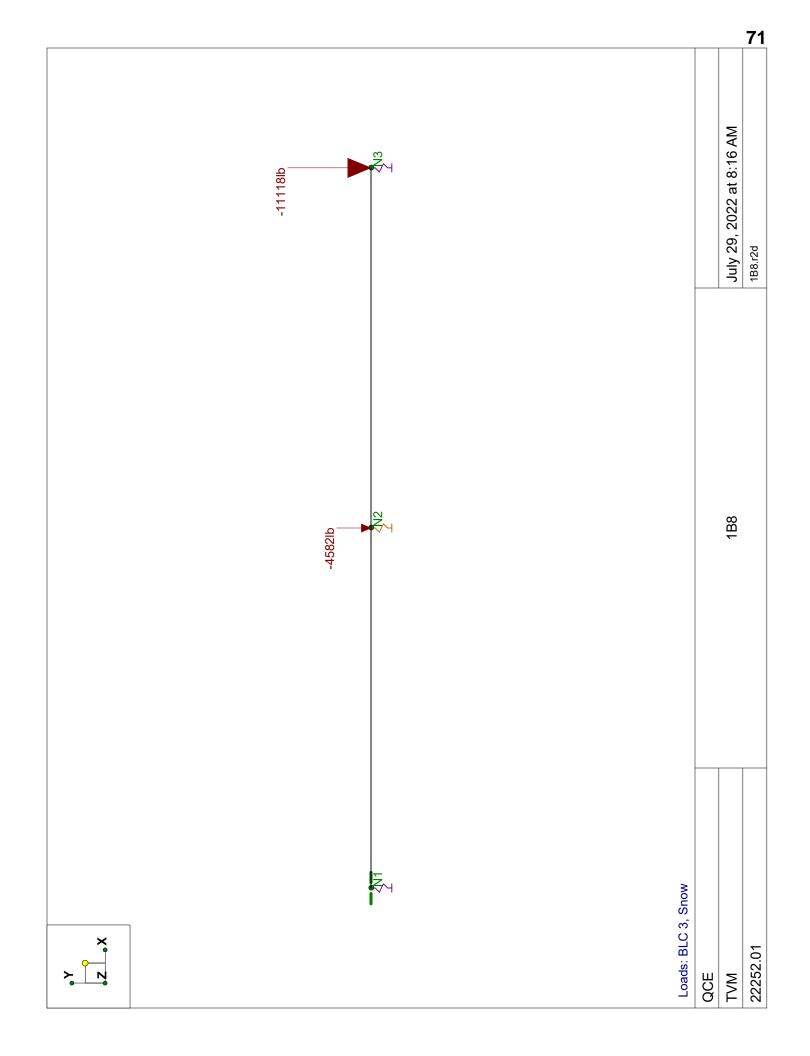
| Lateral Bracing                                             | Bracing Intervals | Comments |  |  |  |  |
|-------------------------------------------------------------|-------------------|----------|--|--|--|--|
| Top Edge (Lu)                                               | 13' 7" o/c        |          |  |  |  |  |
| Bottom Edge (Lu)                                            | 13' 7" o/c        |          |  |  |  |  |
| •Maximum allowable bracing intervals based on applied load. |                   |          |  |  |  |  |

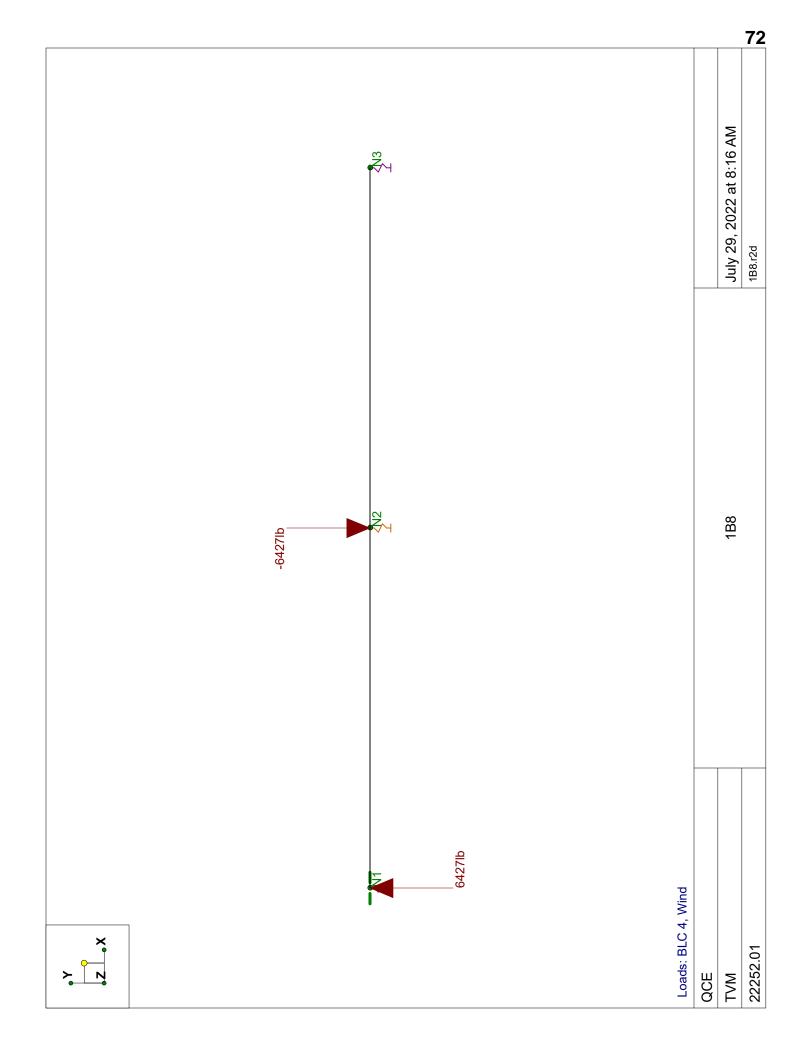
Im allowable bracing intervals based on applied load

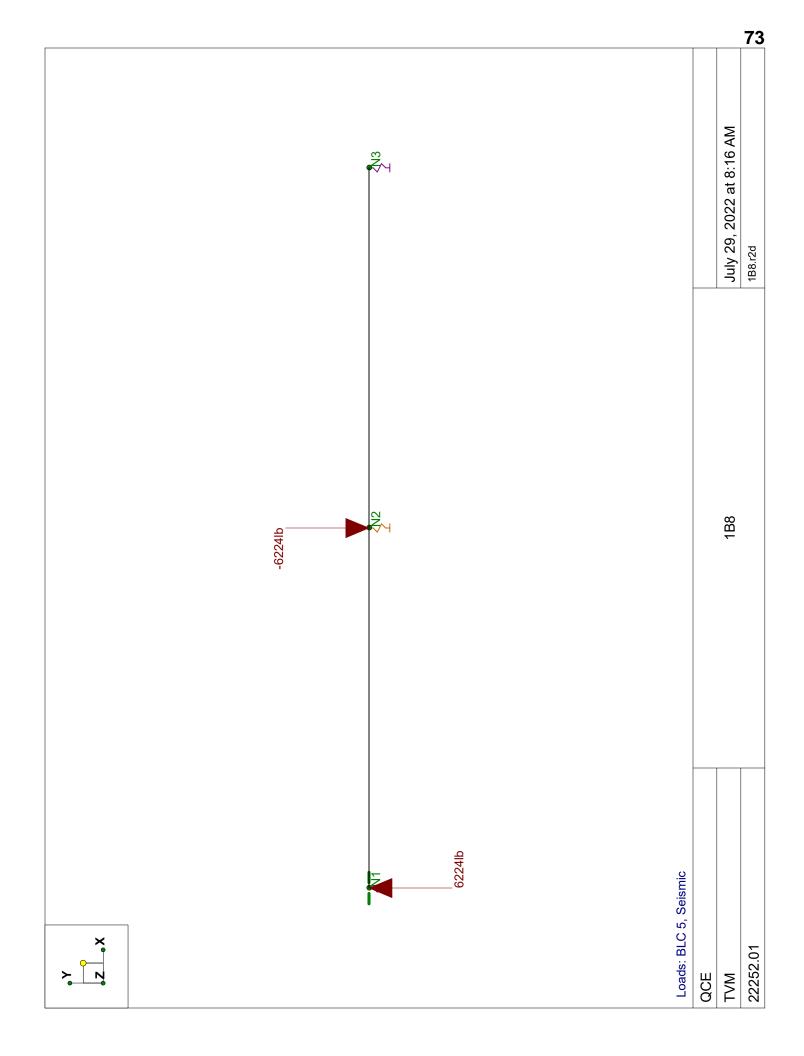

|                       |                     |                 | Dead   | Floor Live |                 |
|-----------------------|---------------------|-----------------|--------|------------|-----------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.00)     | Comments        |
| 0 - Self Weight (PLF) | 0 to 13' 7"         | N/A             | 11.2   |            |                 |
| 1 - Uniform (PSF)     | 0 to 13' 7" (Front) | 6'              | 42.0   | 100.0      | Zen Garden Load |


#### Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Job Notes Travis Michaud QCE (206) 957-3917 tmichaud@quantumce.com

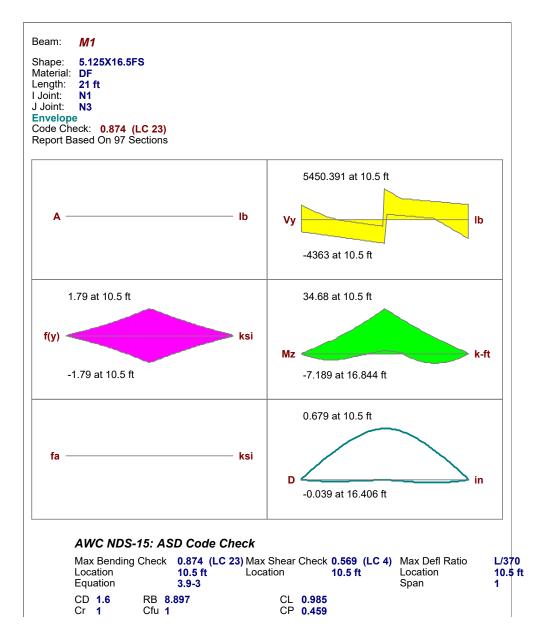


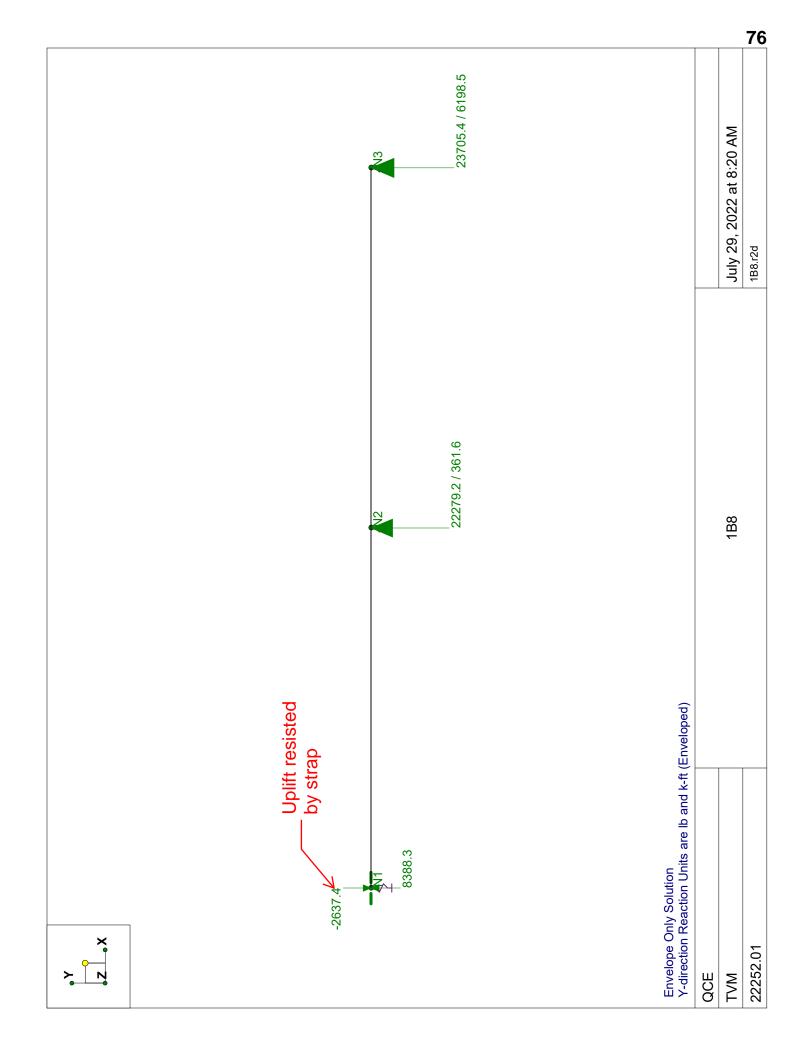








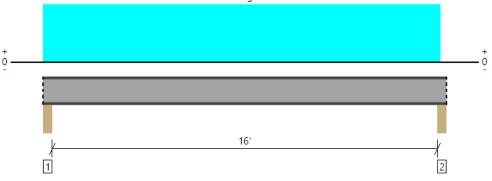




July 29, 2022 8:18 AM Checked By:\_\_\_

# Load Combinations

|    | Description      | S   | P \$ | S | BLC | Fa  | BLC | Fa    | BLC | Fa   | BLC | Factor |    | Fa   | В | Fa | В | Fa | В | . Fa | В | Fa | B | Fa |
|----|------------------|-----|------|---|-----|-----|-----|-------|-----|------|-----|--------|----|------|---|----|---|----|---|------|---|----|---|----|
| 1  | IBC 16-8         | Yes | Y    |   | DL  | 1   |     |       |     |      |     |        |    |      |   |    |   |    |   |      |   |    |   |    |
| 2  |                  |     | Y    |   | LL  | 1   |     |       |     |      |     |        |    |      |   |    |   |    |   |      |   |    |   |    |
| 3  |                  |     | Y    |   | SL  | 1   |     |       |     |      |     |        |    |      |   |    |   |    |   |      |   |    |   |    |
| 4  | IBC 16-9         | Yes | Y    |   | DL  | 1   | LL  | 1     |     |      |     |        |    |      |   |    |   |    |   |      |   |    |   |    |
| 5  | IBC 16-10 (b)    |     |      |   | DL  | 1   | SL  | 1     |     |      |     |        |    |      |   |    |   |    |   |      |   |    |   |    |
| 6  | IBC 16-11 (a)    | Yes | Y    |   | DL  | 1   | LL  | 0.75  |     |      |     |        |    |      |   |    |   |    |   |      |   |    |   |    |
| 7  | IBC 16-11 (b)    |     |      |   | DL  | 1   | LL  | 0.75  | SL  | 0.75 |     |        |    |      |   |    |   |    |   |      |   |    |   |    |
|    | IBC 16-12 (a) (a |     |      |   | DL  | 1   | WL  | 0.6   |     |      |     |        |    |      |   |    |   |    |   |      |   |    |   |    |
|    | IBC 16-12 (a) (b |     |      |   | DL  | 1   | WL  | -0.6  |     |      |     |        |    |      |   |    |   |    |   |      |   |    |   |    |
|    | IBC 16-12 (b) (a |     |      |   | DL  | 1   | EL  | 0.7   |     |      |     |        |    |      |   |    |   |    |   |      |   |    |   |    |
|    | IBC 16-12 (b) (b |     |      |   | DL  | 1   | EL  | -0.7  |     |      |     |        |    |      |   |    |   |    |   |      |   |    |   |    |
| 12 | IBC 16-13 (b) (a | Yes | Y    |   | DL  | 1   | WL  | 0.45  | LL  | 0.75 | LLS | 0.75   | SL | 0.75 |   |    |   |    |   |      |   |    |   |    |
| 13 | IBC 16-13 (b) (b | Yes | Y    |   | DL  | 1   | WL  | -0.45 | LL  | 0.75 | LLS | 0.75   | SL | 0.75 |   |    |   |    |   |      |   |    |   |    |
|    | IBC 16-14 (a)    |     |      |   | DL  | 1   | EL  | 0.5   | LL  | 0.75 | LLS | 0.75   | SL | 0.75 |   |    |   |    |   |      |   |    |   |    |
| 15 | IBC 16-14 (b)    | Yes | Y    |   | DL  | 1   | EL  | -0    | LL  | 0.75 | LLS | 0.75   | SL | 0.75 |   |    |   |    |   |      |   |    |   |    |
| 16 | IBC 16-15 (a)    | Yes | Y    |   | DL  | 0.6 | WL  | 0.6   |     |      |     |        |    |      |   |    |   |    |   |      |   |    |   |    |
| 17 | IBC 16-15 (b)    |     |      |   | DL  | 0.6 | WL  | -0.6  |     |      |     |        |    |      |   |    |   |    |   |      |   |    |   |    |
| 18 | IBC 16-16 (a)    | Yes | Y    |   | DL  | 0.6 | EL  | 0.7   |     |      |     |        |    |      |   |    |   |    |   |      |   |    |   |    |
| 19 | IBC 16-16 (b)    | Yes | Y    |   | DL  | 0.6 | EL  | -0.7  |     |      |     |        |    |      |   |    |   |    |   |      |   |    |   |    |
| 20 | IBC 16-12 (b) (  | Yes | Y    |   | DL  | 1   | EL  | 1.75  |     |      |     |        |    |      |   |    |   |    |   |      |   |    |   |    |
| 21 | IBC 16-12 (b) (  |     |      |   | DL  | 1   | EL  | -1.75 |     |      |     |        |    |      |   |    |   |    |   |      |   |    |   |    |
| 22 | IBC 16-16 (a)    | Yes | Y    |   | DL  | 0.6 | EL  | 1.75  |     |      |     |        |    |      |   |    |   |    |   |      |   |    |   |    |
| 23 | IBC 16-16 (b)    | Yes | Y    |   | DL  | 0.6 | EL  | -1.75 |     |      |     |        |    |      |   |    |   |    |   |      |   |    |   |    |








# First Floor, 1B9: Garage Door 1 piece(s) W10X30 (A992) ASTM Steel

# PASSED





All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed       | Result         | LDF | Load: Combination (Pattern)         |
|-----------------------|-------------------|---------------|----------------|-----|-------------------------------------|
| Member Reaction (lbs) | 13905 @ 3"        | 18955 (4.50") | Passed (73%)   |     | 1.0 D + 0.75 L + 0.75 S (All Spans) |
| Shear (lbs)           | 13283 @ 4 1/2"    | 63000         | Passed (21%)   |     | 1.0 D + 0.75 L + 0.75 S (All Spans) |
| Moment (Ft-lbs)       | 54803 @ 8' 4 1/2" | 55960         | Passed (98%)   |     | 1.0 D + 0.75 L + 0.75 S (All Spans) |
| Live Load Defl. (in)  | 0.290 @ 8' 4 1/2" | 0.542         | Passed (L/672) |     | 1.0 D + 0.75 L + 0.75 S (All Spans) |
| Total Load Defl. (in) | 0.528 @ 8' 4 1/2" | 0.813         | Passed (L/369) |     | 1.0 D + 0.75 L + 0.75 S (All Spans) |

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Applicable calculations are based on ANSI/AISC 360-16.

• A lateral-torsional buckling factor (Сь) of 1.0 has been assumed.

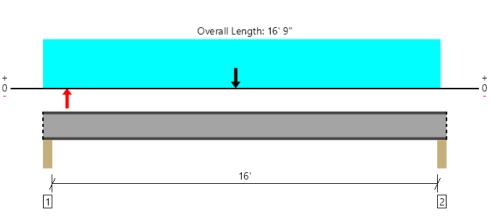
|                                                                                                                                      | В     | earing Leng | th       |      | Loads to Sup | oports (lbs) |          |             |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|----------|------|--------------|--------------|----------|-------------|--|--|--|
| Supports                                                                                                                             | Total | Available   | Required | Dead | Floor Live   | Snow         | Factored | Accessories |  |  |  |
| 1 - Column - HF                                                                                                                      | 4.50" | 4.50"       | 4.50"    | 6269 | 6313         | 3869         | 13905    | Blocking    |  |  |  |
| 2 - Column - HF                                                                                                                      | 4.50" | 4.50"       | 4.50"    | 6089 | 6124         | 3754         | 13498    | Blocking    |  |  |  |
| Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. |       |             |          |      |              |              |          |             |  |  |  |

| Lateral Bracing  | Bracing Intervals  | Comments |
|------------------|--------------------|----------|
| Top Edge (Lu)    | All Bearing Points |          |
| Bottom Edge (Lu) | All Bearing Points |          |

|                       |                 |                 | Dead   | Floor Live | Snow   |                                                        |
|-----------------------|-----------------|-----------------|--------|------------|--------|--------------------------------------------------------|
| Vertical Loads        | Location (Side) | Tributary Width | (0.90) | (1.00)     | (1.15) | Comments                                               |
| 0 - Self Weight (PLF) | 0 to 16' 9"     | N/A             | 30.0   |            |        |                                                        |
| 1 - Uniform (PLF)     | 0 to 16' 6"     | N/A             | 718.5  | 753.8      | 462.0  | Linked from:<br>Typical Cantilever<br>Joist, Support 2 |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>OCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |





# First Floor, 1B9: Garage Door + SW 1 piece(s) W10X30 (A992) ASTM Steel





All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location  | Allowed       | Result         | LDF | Load: Combination (Pattern)                      |
|-----------------------|--------------------|---------------|----------------|-----|--------------------------------------------------|
| Member Reaction (lbs) | 14684 @ 3"         | 18955 (4.50") | Passed (77%)   |     | 1.0 D - 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |
| Shear (lbs)           | 14062 @ 4 1/2"     | 63000         | Passed (22%)   |     | 1.0 D - 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |
| Moment (Ft-lbs)       | 61309 @ 8'         | 91317         | Passed (67%)   |     | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |
| Live Load Defl. (in)  | 0.339 @ 8' 4 5/8"  | 0.542         | Passed (L/575) |     | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |
| Total Load Defl. (in) | 0.577 @ 8' 4 9/16" | 0.813         | Passed (L/338) |     | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Applicable calculations are based on ANSI/AISC 360-16.

• A lateral-torsional buckling factor (Сь) of 1.0 has been assumed.

|                                                                                                                                      | В     | earing Leng | th       |      | ļ          |      |      |            |          |             |
|--------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|----------|------|------------|------|------|------------|----------|-------------|
| Supports                                                                                                                             | Total | Available   | Required | Dead | Floor Live | Snow | Wind | Seismic    | Factored | Accessories |
| 1 - Column - HF                                                                                                                      | 4.50" | 4.50"       | 4.50"    | 6269 | 6313       | 3869 | -513 | 1484/-1484 | 14684    | Blocking    |
| 2 - Column - HF                                                                                                                      | 4.50" | 4.50"       | 4.50"    | 6089 | 6124       | 3754 | 513  | 1484/-1484 | 14277    | Blocking    |
| Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. |       |             |          |      |            |      |      |            |          |             |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | Continuous        |          |
| Bottom Edge (Lu) | Continuous        |          |

|                       |                 |                 | Dead   | Floor Live | Snow   | Wind   | Seismic |                                                        |
|-----------------------|-----------------|-----------------|--------|------------|--------|--------|---------|--------------------------------------------------------|
| Vertical Loads        | Location (Side) | Tributary Width | (0.90) | (1.00)     | (1.15) | (1.60) | (1.60)  | Comments                                               |
| 0 - Self Weight (PLF) | 0 to 16' 9"     | N/A             | 30.0   |            |        |        |         |                                                        |
| 1 - Point (lb)        | 1'              | N/A             | -      | -          | -      | -1191  | -3445   | 1B2 Beam                                               |
| 2 - Point (Ib)        | 8'              | N/A             | -      | -          | -      | 1191   | 3445    | 1B2 Beam                                               |
| 3 - Uniform (PLF)     | 0 to 16' 6"     | N/A             | 718.5  | 753.8      | 462.0  | -      | -       | Linked from:<br>Typical Cantilever<br>Joist, Support 2 |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

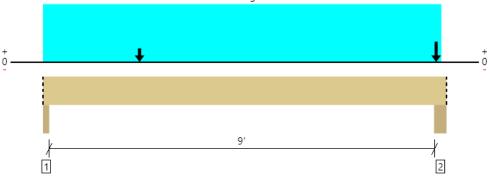
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Travis Michaud
 QCE

 (206) 957-3917
 tmichaud@quantumce.com




7/29/2022 2:54:01 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.2.2 File Name: 22252.01 - 42255 Intrachat Page 22 / 75





# First Floor, 1B10: Garage Door + SW 1 piece(s) 5 1/8" x 12" 24F-V8 DF Glulam

Overall Length: 9' 9"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location   | Allowed      | Result         | LDF  | Load: Combination (Pattern)                      |
|-----------------------|---------------------|--------------|----------------|------|--------------------------------------------------|
| Member Reaction (lbs) | 9192 @ 1 1/2"       | 9994 (3.00") | Passed (92%)   |      | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |
| Shear (lbs)           | 5205 @ 1' 3"        | 10865        | Passed (48%)   | 1.00 | 1.0 D + 1.0 L (All Spans)                        |
| Pos Moment (Ft-Ibs)   | 15906 @ 4' 9"       | 24285        | Passed (65%)   | 1.00 | 1.0 D + 1.0 L (All Spans)                        |
| Neg Moment (Ft-lbs)   | -632 @ 2' 4"        | 38431        | Passed (2%)    | 1.60 | 0.6 D - 0.7 E (All Spans)                        |
| Live Load Defl. (in)  | 0.139 @ 4' 7 13/16" | 0.308        | Passed (L/800) |      | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |
| Total Load Defl. (in) | 0.230 @ 4' 8 5/16"  | 0.463        | Passed (L/483) |      | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• A 1.3% decrease in the moment capacity has been added to account for lateral stability.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 9' 3".

• Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 1' 8 1/2".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• Applicable calculations are based on NDS.

|                  |       | l         |          |      |            |      |      |            |          |             |
|------------------|-------|-----------|----------|------|------------|------|------|------------|----------|-------------|
| Supports         | Total | Available | Required | Dead | Floor Live | Snow | Wind | Seismic    | Factored | Accessories |
| 1 - Column - SPF | 3.00" | 3.00"     | 2.76"    | 3484 | 3580       | 2195 | 907  | 2623/-2623 | 9192     | Blocking    |
| 2 - Column - SPF | 6.00" | 6.00"     | 4.89"    | 7404 | 3802       | 7489 | 284  | 822/-822   | 16304    | Blocking    |

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing  | Bracing Intervals  | Comments |
|------------------|--------------------|----------|
| Top Edge (Lu)    | All Bearing Points |          |
| Bottom Edge (Lu) | All Bearing Points |          |

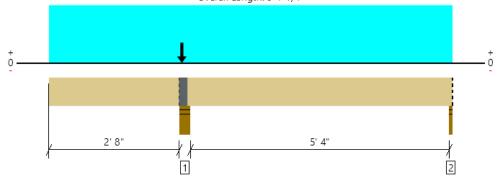
|                       |                        |                 | Dead   | Floor Live | Snow   | Wind   | Seismic |                                                        |
|-----------------------|------------------------|-----------------|--------|------------|--------|--------|---------|--------------------------------------------------------|
| Vertical Loads        | Location (Side)        | Tributary Width | (0.90) | (1.00)     | (1.15) | (1.60) | (1.60)  | Comments                                               |
| 0 - Self Weight (PLF) | 0 to 9' 9"             | N/A             | 14.9   |            |        |        |         |                                                        |
| 1 - Point (Ib)        | 2' 4" (Front)          | N/A             | -      | -          | -      | 1191   | 3445    | 1B2 Beam                                               |
| 2 - Uniform (PLF)     | 0 to 9' 7 1/2" (Front) | N/A             | 718.5  | 753.8      | 462.0  | -      | -       | Linked from:<br>Typical Cantilever<br>Joist, Support 2 |
| 3 - Point (Ib)        | 9' 6" (Front)          | N/A             | 3827   | 127        | 5237   | -      | -       | Linked from: 1B12:<br>Garage Grid J,<br>Support 2      |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes
Travis Michaud
QCE
(206) 957-3917
tmichaud@quantumce.com




7/29/2022 2:54:01 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.2.2 File Name: 22252.01 - 42255 Intrachat Page 23 / 75



# First Floor, 1B11: Deck Header 2 piece(s) 2 x 8 SPF No.1/No.2

Overall Length: 8' 7 1/4"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location  | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|--------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 1099 @ 8' 7"       | 2126 (1.75") | Passed (52%)    |      | 1.0 D + 1.0 L (Alt Spans)   |
| Shear (lbs)           | 1114 @ 3' 8 3/4"   | 1958         | Passed (57%)    | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Moment (Ft-lbs)       | -1700 @ 2' 10 3/4" | 2300         | Passed (74%)    | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Live Load Defl. (in)  | 0.132 @ 0          | 0.200        | Passed (2L/528) |      | 1.0 D + 1.0 L (Alt Spans)   |
| Total Load Defl. (in) | 0.143 @ 0          | 0.290        | Passed (2L/488) |      | 1.0 D + 1.0 L (Alt Spans)   |

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240)

• Overhang deflection criteria: LL (0.2") and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• WARNING: The 13834 lbs load above support located at 2' 10 3/4" exceeds squash block capacity. Member design has not considered this load. Special consideration is required by the Designer of Record.

· Applicable calculations are based on NDS.

|                    | Bearing Length |           |          | Loads to Supports (lbs) |            |      |          |                         |
|--------------------|----------------|-----------|----------|-------------------------|------------|------|----------|-------------------------|
| Supports           | Total          | Available | Required | Dead                    | Floor Live | Snow | Factored | Accessories             |
| 1 - Stud wall - HF | 5.50"          | 5.50"     | 2.16"    | 7636                    | 4935       | 6140 | 15942    | Blocking, Squash Blocks |
| 2 - Stud wall - HF | 1.75"          | 1.75"     | 1.50"    | 182                     | 917/-236   | -    | 1099/-54 | Blocking                |

Squash Blocks must match bearing length and are assumed to carry all loads applied directly above them, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing  | Bracing Intervals | Comments |  |  |  |  |
|------------------|-------------------|----------|--|--|--|--|
| Top Edge (Lu)    | 8' 7" o/c         |          |  |  |  |  |
| Bottom Edge (Lu) | 8' 7" o/c         |          |  |  |  |  |
|                  |                   |          |  |  |  |  |

Maximum allowable bracing intervals based on applied load.

|                       |                        |                 | Dead   | Floor Live | Snow   |                                         |
|-----------------------|------------------------|-----------------|--------|------------|--------|-----------------------------------------|
| Vertical Loads        | Location (Side)        | Tributary Width | (0.90) | (1.00)     | (1.15) | Comments                                |
| 0 - Self Weight (PLF) | 0 to 8' 7 1/4"         | N/A             | 5.5    |            |        |                                         |
| 1 - Uniform (PSF)     | 0 to 8' 7 1/4" (Front) | 5' 4"           | 15.0   | 60.0       | -      | Default Load                            |
| 2 - Point (Ib)        | 2' 10" (Front)         | N/A             | 7082   | 2862       | 6140   | Linked from: 2B10:<br>Grid I, Support 1 |

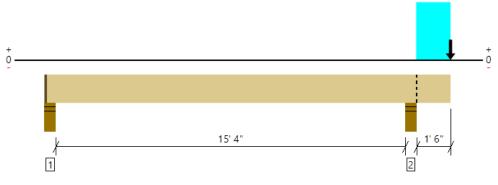
#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>OCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |




7/29/2022 2:54:01 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.2.2 File Name: 22252.01 - 42255 Intrachat Page 24 / 75





# First Floor, 1B12: Garage Grid J 1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL

# Overall Length: 17' 9"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed       | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|---------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 9064 @ 16' 1/4"   | 11694 (5.50") | Passed (78%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 7782 @ 17' 2 7/8" | 13861         | Passed (56%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | -13610 @ 16' 1/4" | 34332         | Passed (40%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.101 @ 17' 9"    | 0.200         | Passed (2L/408) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.163 @ 17' 9"    | 0.200         | Passed (2L/254) |      | 1.0 D + 1.0 S (All Spans)   |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240)

• Overhang deflection criteria: LL (0.2") and TL (0.2").

Allowed moment does not reflect the adjustment for the beam stability factor.

• -710 lbs uplift at support located at 4". Strapping or other restraint may be required.

|                    | Bearing Length |           |          | Loads to Supports (lbs) |            |      |          |                  |
|--------------------|----------------|-----------|----------|-------------------------|------------|------|----------|------------------|
| Supports           | Total          | Available | Required | Dead                    | Floor Live | Snow | Factored | Accessories      |
| 1 - Stud wall - HF | 5.50"          | 4.25"     | 1.50"    | -190                    | -7         | -520 | -710     | 1 1/4" Rim Board |
| 2 - Stud wall - HF | 5.50"          | 5.50"     | 4.26"    | 3827                    | 127        | 5237 | 9064     | Blocking         |

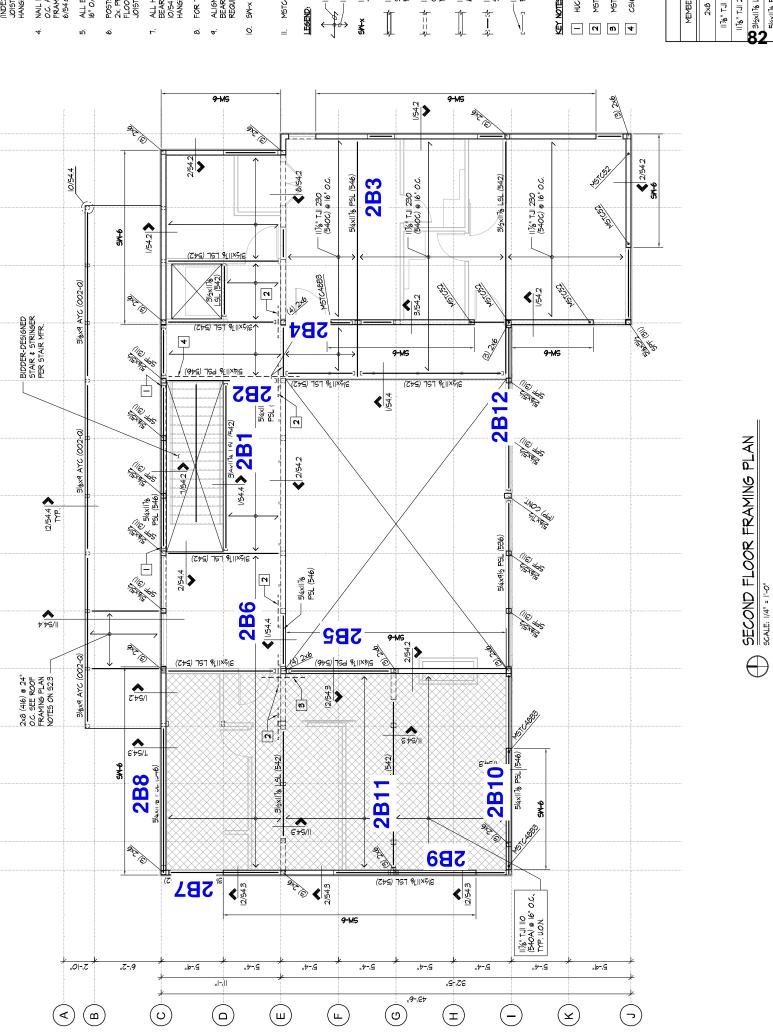
• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 17' 8" o/c        |          |
| Bottom Edge (Lu) | 17' 8" o/c        |          |

•Maximum allowable bracing intervals based on applied load.

| Vertical Loads        | Location (Side)          | Tributary Width | Dead<br>(0.90) | Floor Live<br>(1.00) | Snow<br>(1.15) | Comments                                           |
|-----------------------|--------------------------|-----------------|----------------|----------------------|----------------|----------------------------------------------------|
| 0 - Self Weight (PLF) | 1 1/4" to 17' 9"         | N/A             | 19.5           |                      |                |                                                    |
| 1 - Uniform (PSF)     | 16' 3" to 17' 9" (Front) | 2'              | 12.0           | 40.0                 | -              | Default Load                                       |
| 2 - Uniform (PSF)     | 16' 3" to 17' 9" (Front) | 18'             | 12.0           | -                    | -              | Wall                                               |
| 3 - Point (lb)        | 17' 9" (Front)           | N/A             | 2933           | -                    | 4717           | Linked from: RB3:<br>Cantilever Beam,<br>Support 1 |

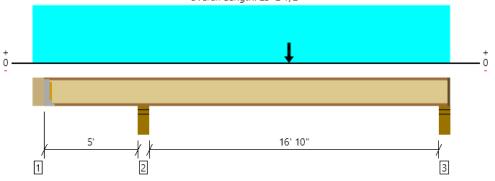

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes
Travis Michaud
QCE
(206) 957-3917
tmichaud@quantumce.com






514×1176 F



# Second Floor, Cantilever Joist 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

Overall Length: 23' 2 1/2"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results             | Actual @ Location   | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|----------------------------|---------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs)      | 1398 @ 5' 8 1/4"    | 2790 (5.25") | Passed (50%)    | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Shear (lbs)                | 734 @ 5' 11"        | 1821         | Passed (40%)    | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Moment (Ft-lbs)            | -2273 @ 5' 8 1/4"   | 4215         | Passed (54%)    | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Live Load Defl. (in)       | 0.170 @ 15' 1 5/16" | 0.429        | Passed (L/999+) |      | 1.0 D + 1.0 L (Alt Spans)   |
| Total Load Defl. (in)      | 0.253 @ 15' 7/8"    | 0.857        | Passed (L/813)  |      | 1.0 D + 1.0 L (Alt Spans)   |
| TJ-Pro <sup>™</sup> Rating | 46                  | 45           | Passed          |      |                             |

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

PAS

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• -353 lbs uplift at support located at 5 1/2". Strapping or other restraint may be required.

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro $^{\mbox{\tiny TM}}$  Rating include: 1x4 Flat strapping.

|                               | Bearing Length |                     |             | Loads | to Supports |          |                  |
|-------------------------------|----------------|---------------------|-------------|-------|-------------|----------|------------------|
| Supports                      | Total          | Available           | Required    | Dead  | Floor Live  | Factored | Accessories      |
| 1 - Hanger on 11 7/8" HF beam | 5.50"          | Hanger <sup>1</sup> | 1.75" / - 2 | -90   | 156/-263    | 66/-353  | See note 1       |
| 2 - Stud wall - SPF           | 5.50"          | 5.50"               | 3.50"       | 416   | 982         | 1398     | None             |
| 3 - Stud wall - HF            | 5.50"          | 4.25"               | 1.75"       | 152   | 390         | 542      | 1 1/4" Rim Board |

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

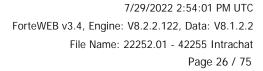
• 1 See Connector grid below for additional information and/or requirements.

 $\bullet$   $^{\rm 2}$  Required Bearing Length / Required Bearing Length with Web Stiffeners

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 6' 2" o/c         |          |
| Bottom Edge (Lu) | 5' 8" o/c         |          |
|                  |                   |          |

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

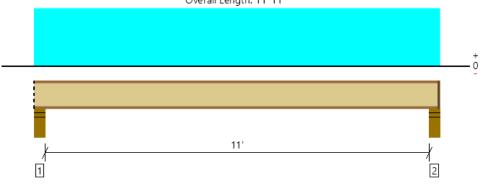
•Maximum allowable bracing intervals based on applied load.


| Connector: Simpson Strong-Tie |          |             |               |                |                  |                |  |  |  |
|-------------------------------|----------|-------------|---------------|----------------|------------------|----------------|--|--|--|
| Support                       | Model    | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories    |  |  |  |
| 1 - Face Mount Hanger         | U3516/20 | 2.00"       | N/A           | 16-10dx1.5     | 6-10dx1.5        | Web Stiffeners |  |  |  |

Weyerhaeuser

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                   |                 |         | Dead   | Floor Live |              |
|-------------------|-----------------|---------|--------|------------|--------------|
| Vertical Loads    | Location        | Spacing | (0.90) | (1.00)     | Comments     |
| 1 - Uniform (PSF) | 0 to 23' 2 1/2" | 16"     | 12.0   | 40.0       | Default Load |
| 2 - Point (PLF)   | 14'             | 16"     | 80.0   | -          | Partition    |


| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>OCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |





# Second Floor, 11'-0" Joist 1 piece(s) 11 7/8" TJI ® 110 @ 16" OC

# Overall Length: 11' 11"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results             | Actual @ Location  | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|----------------------------|--------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs)      | 413 @ 4 1/2"       | 1375 (3.50") | Passed (30%)    | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Shear (lbs)                | 381 @ 5 1/2"       | 1560         | Passed (24%)    | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Moment (Ft-lbs)            | 1081 @ 5' 11 1/2"  | 3160         | Passed (34%)    | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Live Load Defl. (in)       | 0.070 @ 5' 11 1/2" | 0.279        | Passed (L/999+) |      | 1.0 D + 1.0 L (All Spans)   |
| Total Load Defl. (in)      | 0.092 @ 5' 11 1/2" | 0.558        | Passed (L/999+) |      | 1.0 D + 1.0 L (All Spans)   |
| TJ-Pro <sup>™</sup> Rating | 59                 | 45           | Passed          |      |                             |

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

0

• A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro<sup>™</sup> Rating include: 1x4 Flat strapping.

|                    | Bearing Length |           |          | Loads      | to Supports |          |                  |
|--------------------|----------------|-----------|----------|------------|-------------|----------|------------------|
| Supports           | Total          | Available | Required | Dead       | Floor Live  | Factored | Accessories      |
| 1 - Stud wall - HF | 5.50"          | 5.50"     | 1.75"    | 95         | 318         | 413      | Blocking         |
| 2 - Stud wall - HF | 5.50"          | 4.25"     | 1.75"    | <b>9</b> 5 | 318         | 413      | 1 1/4" Rim Board |

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 5' 6" o/c         |          |
| Bottom Edge (Lu) | 11' 10" o/c       |          |

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

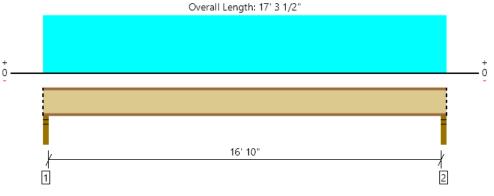
•Maximum allowable bracing intervals based on applied load.

|                   |              |         | Dead   | Floor Live |              |
|-------------------|--------------|---------|--------|------------|--------------|
| Vertical Load     | Location     | Spacing | (0.90) | (1.00)     | Comments     |
| 1 - Uniform (PSF) | 0 to 11' 11" | 16"     | 12.0   | 40.0       | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>QCE<br>(206) 957-3917<br>tmichaud@guantumce.com |           |



7/29/2022 2:54:01 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.2.2 File Name: 22252.01 - 42255 Intrachat Page 28 / 75



# Second Floor, 16'-10" Joist 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results             | Actual @ Location | Allowed      | Result         | LDF  | Load: Combination (Pattern) |
|----------------------------|-------------------|--------------|----------------|------|-----------------------------|
| Member Reaction (lbs)      | 599 @ 1 3/4"      | 1305 (2.75") | Passed (46%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Shear (lbs)                | 584 @ 2 3/4"      | 1655         | Passed (35%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Moment (Ft-lbs)            | 2505 @ 8' 7 3/4"  | 4215         | Passed (59%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Live Load Defl. (in)       | 0.273 @ 8' 7 3/4" | 0.425        | Passed (L/748) |      | 1.0 D + 1.0 L (All Spans)   |
| Total Load Defl. (in)      | 0.354 @ 8' 7 3/4" | 0.850        | Passed (L/576) |      | 1.0 D + 1.0 L (All Spans)   |
| TJ-Pro <sup>™</sup> Rating | 45                | 45           | Passed         |      |                             |

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

A structural analysis of the deck has not been performed.

• Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge<sup>TM</sup> Panel (24" Span Rating) that is glued and nailed down.

• Additional considerations for the TJ-Pro<sup>™</sup> Rating include: 1x4 Flat strapping.

|                    | Bearing Length |           |          | Loads | to Supports |          |             |
|--------------------|----------------|-----------|----------|-------|-------------|----------|-------------|
| Supports           | Total          | Available | Required | Dead  | Floor Live  | Factored | Accessories |
| 1 - Stud wall - HF | 2.75"          | 2.75"     | 1.75"    | 138   | 461         | 599      | Blocking    |
| 2 - Stud wall - HF | 2.75"          | 2.75"     | 1.75"    | 138   | 461         | 599      | Blocking    |

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing  | Bracing Intervals | Comments |  |  |  |  |
|------------------|-------------------|----------|--|--|--|--|
| Top Edge (Lu)    | 5' 4" o/c         |          |  |  |  |  |
| Bottom Edge (Lu) | 17' 4" o/c        |          |  |  |  |  |
|                  |                   |          |  |  |  |  |

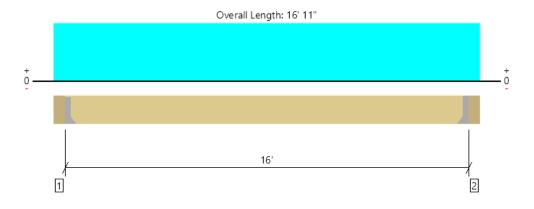
•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

|                   |                 |         | Dead   | Floor Live |              |
|-------------------|-----------------|---------|--------|------------|--------------|
| Vertical Load     | Location        | Spacing | (0.90) | (1.00)     | Comments     |
| 1 - Uniform (PSF) | 0 to 17' 3 1/2" | 16"     | 12.0   | 40.0       | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


| ForteWEB Software Operator | Job Notes |
|----------------------------|-----------|
| Travis Michaud             |           |
| QCE                        |           |
| (206) 957-3917             |           |
| tmichaud@quantumce.com     |           |







# Second Floor, 2B1: Landing Grid D 1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed      | Result         | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|----------------|------|-----------------------------|
| Member Reaction (lbs) | 1752 @ 5 1/2"     | 4725 (1.50") | Passed (37%)   |      | 1.0 D + 1.0 L (All Spans)   |
| Shear (lbs)           | 1535 @ 1' 5 3/8"  | 8590         | Passed (18%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Moment (Ft-lbs)       | 7008 @ 8' 5 1/2"  | 15953        | Passed (44%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Live Load Defl. (in)  | 0.247 @ 8' 5 1/2" | 0.400        | Passed (L/776) |      | 1.0 D + 1.0 L (All Spans)   |
| Total Load Defl. (in) | 0.452 @ 8' 5 1/2" | 0.800        | Passed (L/425) |      | 1.0 D + 1.0 L (All Spans)   |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

|                               | Bearing Length |                     |          | Loads | to Supports |          |             |
|-------------------------------|----------------|---------------------|----------|-------|-------------|----------|-------------|
| Supports                      | Total          | Available           | Required | Dead  | Floor Live  | Factored | Accessories |
| 1 - Hanger on 11 7/8" HF beam | 5.50"          | Hanger <sup>1</sup> | 1.50"    | 831   | 1015        | 1846     | See note 1  |
| 2 - Hanger on 11 7/8" HF beam | 5.50"          | Hanger <sup>1</sup> | 1.50"    | 831   | 1015        | 1846     | See note 1  |

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing                                            | Bracing Intervals | Comments |  |  |  |
|------------------------------------------------------------|-------------------|----------|--|--|--|
| Top Edge (Lu)                                              | 16' o/c           |          |  |  |  |
| Bottom Edge (Lu)                                           | 16' o/c           |          |  |  |  |
| -Maximum allowable brasing intervals based on applied load |                   |          |  |  |  |

Maximum allowable bracing intervals based on applied load.

# Connector: Simpson Strong-Tie

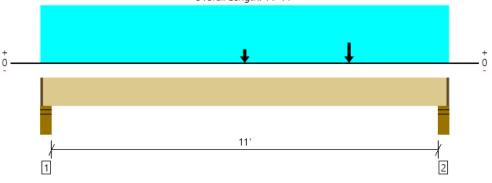
| Support               | Model  | Seat Length | Top Fasteners Face Fasteners Member Fas |        | Member Fasteners | Accessories |  |
|-----------------------|--------|-------------|-----------------------------------------|--------|------------------|-------------|--|
| 1 - Face Mount Hanger | LUS414 | 2.00"       | N/A                                     | 10-16d | 6-16d            |             |  |
| 2 - Face Mount Hanger | LUS414 | 2.00"       | N/A                                     | 10-16d | 6-16d            |             |  |
|                       |        |             |                                         |        |                  |             |  |

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                       |                      |                 | Dead   | Floor Live |              |
|-----------------------|----------------------|-----------------|--------|------------|--------------|
| Vertical Loads        | Location (Side)      | Tributary Width | (0.90) | (1.00)     | Comments     |
| 0 - Self Weight (PLF) | 5 1/2" to 16' 5 1/2" | N/A             | 13.0   |            |              |
| 1 - Uniform (PSF)     | 0 to 16' 11" (Front) | 3'              | 12.0   | 40.0       | Default Load |
| 2 - Uniform (PLF)     | 0 to 16' 11" (Front) | N/A             | 50.0   | -          | Railing      |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


Weyerhaeuser

| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>OCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |



# Second Floor, 2B2: Stairway Grid 10 1 piece(s) 5 1/8" x 9" 24F-V4 DF Glulam

Overall Length: 11' 11"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location   | Allowed      | Result         | LDF  | Load: Combination (Pattern) |
|-----------------------|---------------------|--------------|----------------|------|-----------------------------|
| Member Reaction (lbs) | 3435 @ 11' 7"       | 9257 (4.25") | Passed (37%)   |      | 1.0 D + 1.0 L (All Spans)   |
| Shear (lbs)           | 3365 @ 10' 8 1/2"   | 8149         | Passed (41%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Pos Moment (Ft-Ibs)   | 9783 @ 5' 11 1/2"   | 13838        | Passed (71%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Live Load Defl. (in)  | 0.194 @ 6' 2 7/16"  | 0.281        | Passed (L/696) |      | 1.0 D + 1.0 L (All Spans)   |
| Total Load Defl. (in) | 0.373 @ 6' 2 13/16" | 0.563        | Passed (L/361) |      | 1.0 D + 1.0 L (All Spans)   |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 11' 3".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

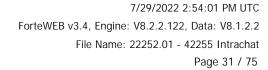
Applicable calculations are based on NDS.

|                     | Bearing Length |           |          | Loads to Supports (lbs) |            |          |                  |
|---------------------|----------------|-----------|----------|-------------------------|------------|----------|------------------|
| Supports            | Total          | Available | Required | Dead                    | Floor Live | Factored | Accessories      |
| 1 - Stud wall - SPF | 5.50"          | 4.25"     | 1.50"    | 897                     | 1040       | 1937     | 1 1/4" Rim Board |
| 2 - Stud wall - SPF | 5.50"          | 4.25"     | 1.58"    | 1708                    | 1732       | 3440     | 1 1/4" Rim Board |

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

| Lateral Bracing                                            | Bracing Intervals | Comments |  |  |  |
|------------------------------------------------------------|-------------------|----------|--|--|--|
| Top Edge (Lu)                                              | 11' 9" o/c        |          |  |  |  |
| Bottom Edge (Lu)                                           | 11' 9" o/c        |          |  |  |  |
| Maximum allowable bracing intervals based on applied load. |                   |          |  |  |  |

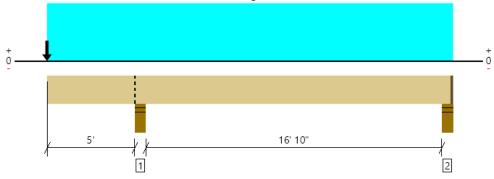
um allowable bracing intervals based on applied load


|                       |                         |                 | Dead   | Floor Live |                                                 |
|-----------------------|-------------------------|-----------------|--------|------------|-------------------------------------------------|
| Vertical Loads        | Location (Side)         | Tributary Width | (0.90) | (1.00)     | Comments                                        |
| 0 - Self Weight (PLF) | 1 1/4" to 11' 9 3/4"    | N/A             | 11.2   |            |                                                 |
| 1 - Uniform (PSF)     | 0 to 11' 11" (Front)    | 1'              | 12.0   | 40.0       | Default Load                                    |
| 2 - Point (Ib)        | 9' (Front)              | N/A             | 1500   | 1280       | Stairway                                        |
| 3 - Point (Ib)        | (lb) 5' 11 1/2" (Front) |                 | 831    | 1015       | Linked from: 2B1:<br>Landing Beam,<br>Support 1 |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser


| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>QCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |







#### Overall Length: 22' 9"



LDF

1.00

1.00

1.0 D + 1.0 L (All Spans)

1.0 D + 1.0 L (All Spans)

1.0 D + 1.0 L (Alt Spans)

1.0 D + 1.0 L (Alt Spans)

 Load: Combination (Pattern)
 System : Floor

 1.0 D + 1.0 L (All Spans)
 Member Type :

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

Total Load Defl. (in) 0.413 @ 0

**Design Results** 

Shear (lbs)

Moment (Ft-lbs)

Live Load Defl. (in)

Member Reaction (lbs)

• Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

-321 lbs uplift at support located at 22' 5". Strapping or other restraint may be required.

|                    | Bearing Length |           |          | Loads | to Supports |          |                  |
|--------------------|----------------|-----------|----------|-------|-------------|----------|------------------|
| Supports           | Total          | Available | Required | Dead  | Floor Live  | Factored | Accessories      |
| 1 - Stud wall - HF | 5.50"          | 5.50"     | 1.60"    | 1504  | 1889        | 3393     | Blocking         |
| 2 - Stud wall - HF | 5.50"          | 4.25"     | 1.50"    | 11    | 357/-332    | 368/-321 | 1 1/4" Rim Board |

Allowed

11694 (5.50")

12053

29854

0.261

0.523

Result

Passed (29%)

Passed (17%)

Passed (35%)

Passed (2L/502)

Passed (2L/304)

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Actual @ Location

3393 @ 5' 2 3/4"

2087 @ 4' 1/8"

-10390 @ 5' 2 3/4"

0.250 @ 0

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 22' 8" o/c        |          |
| Bottom Edge (Lu) | 22' 8" o/c        |          |
|                  | L                 |          |

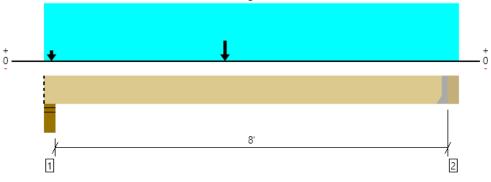
•Maximum allowable bracing intervals based on applied load.

|                       |                     |                 | Dead   | Floor Live |              |
|-----------------------|---------------------|-----------------|--------|------------|--------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.00)     | Comments     |
| 0 - Self Weight (PLF) | 0 to 22' 7 3/4"     | N/A             | 19.5   |            |              |
| 1 - Uniform (PSF)     | 0 to 22' 9" (Front) | 1'              | 12.0   | 40.0       | Default Load |
| 2 - Point (Ib)        | 0 (Front)           | N/A             | 800    | 1000       | Beams        |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>QCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |








# Second Floor, 2B4: Kitchen Grid 11 1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL





All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern)                      |
|-----------------------|-------------------|--------------|-----------------|------|--------------------------------------------------|
| Member Reaction (lbs) | 5485 @ 8' 5 1/2"  | 5485 (1.67") | Passed (100%)   |      | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |
| Shear (lbs)           | 3349 @ 7' 5 5/8"  | 13861        | Passed (24%)    | 1.15 | 1.0 D + 0.75 L + 0.75 S (All Spans)              |
| Moment (Ft-lbs)       | 13620 @ 4'        | 47766        | Passed (29%)    | 1.60 | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |
| Live Load Defl. (in)  | 0.081 @ 4' 4 3/8" | 0.203        | Passed (L/999+) |      | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |
| Total Load Defl. (in) | 0.116 @ 4' 4 1/2" | 0.406        | Passed (L/838)  |      | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |

ystem : Floor ember Type : Flush Beam uilding Use : Residential uilding Code : IBC 2015 esign Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• -360 lbs uplift at support located at 4". Strapping or other restraint may be required.

|                                | Bearing Length |                     | Loads to Supports (lbs) |      |            |      |      |            |           |             |
|--------------------------------|----------------|---------------------|-------------------------|------|------------|------|------|------------|-----------|-------------|
| Supports                       | Total          | Available           | Required                | Dead | Floor Live | Snow | Wind | Seismic    | Factored  | Accessories |
| 1 - Stud wall - SPF            | 5.50"          | 5.50"               | 3.03"                   | 2255 | 2594       | 1714 | 703  | 2447/-2447 | 6771/-360 | Blocking    |
| 2 - Hanger on 11 7/8" LSL beam | 5.50"          | Hanger <sup>1</sup> | 1.67"                   | 2104 | 1989       | 1763 | 579  | 2013/-2013 | 5975/-146 | See note 1  |

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

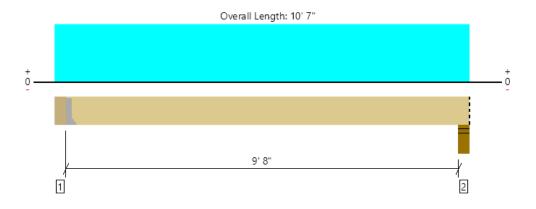
| Lateral Bracing                                             | Bracing Intervals | Comments |  |  |  |
|-------------------------------------------------------------|-------------------|----------|--|--|--|
| Top Edge (Lu)                                               | 8' 6" o/c         |          |  |  |  |
| Bottom Edge (Lu)                                            | 8' 6" o/c         |          |  |  |  |
| •Maximum allowable bracing intervals based on applied load. |                   |          |  |  |  |

racing intervals based on applied load

| Connector: Simpson Strong-Tie |             |             |               |                |                  |             |
|-------------------------------|-------------|-------------|---------------|----------------|------------------|-------------|
| Support                       | Model       | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
| 2 - Face Mount Hanger         | HHUS5.50/10 | 3.00"       | N/A           | 30-10d         | 10-10d           |             |

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                       |                     |                 | Dead   | Floor Live | Snow   | Wind   | Seismic |              |
|-----------------------|---------------------|-----------------|--------|------------|--------|--------|---------|--------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.00)     | (1.15) | (1.60) | (1.60)  | Comments     |
| 0 - Self Weight (PLF) | 0 to 8' 5 1/2"      | N/A             | 19.5   |            |        |        |         |              |
| 1 - Uniform (PSF)     | 0 to 8' 11" (Front) | 11'             | 12.0   | 40.0       | -      | -      |         | Default Load |
| 2 - Point (lb)        | 2" (Front)          | N/A             | 200    | 660        | -      | -      |         | Grid E Beam  |
| 3 - Uniform (PSF)     | 0 to 8' 11" (Front) | 9'              | 12.0   | -          | -      | -      |         | Wall         |
| 4 - Uniform (PSF)     | 0 to 8' 11" (Front) | 13'             | 16.0   | -          | 30.0   | -      |         | Roof         |
| 5 - Point (lb)        | 4' (Front)          | N/A             | -      | -          | -      | 1282   | 4460    | SW Grid 11   |


| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>OCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |







# Second Floor, 2B5: Kitchen Grid 5 1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed      | Result         | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|----------------|------|-----------------------------|
| Member Reaction (lbs) | 3804 @ 5 1/2"     | 4725 (1.50") | Passed (81%)   |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 3035 @ 1' 5 3/8"  | 9878         | Passed (31%)   | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 9312 @ 5' 4 1/4"  | 18346        | Passed (51%)   | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.133 @ 5' 4 1/4" | 0.245        | Passed (L/885) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.246 @ 5' 4 1/4" | 0.490        | Passed (L/478) |      | 1.0 D + 1.0 S (All Spans)   |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

|                                | Bearing Length |                     |          | Loads to Supports (lbs) |            |      |          |             |
|--------------------------------|----------------|---------------------|----------|-------------------------|------------|------|----------|-------------|
| Supports                       | Total          | Available           | Required | Dead                    | Floor Live | Snow | Factored | Accessories |
| 1 - Hanger on 11 7/8" PSL beam | 5.50"          | Hanger <sup>1</sup> | 1.50"    | 1905                    | 214        | 2249 | 4154     | See note 1  |
| 2 - Stud wall - SPF            | 5.50"          | 5.50"               | 2.73"    | 1867                    | 209        | 2196 | 4063     | Blocking    |

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing                                             | Bracing Intervals | Comments |  |  |  |  |  |
|-------------------------------------------------------------|-------------------|----------|--|--|--|--|--|
| Top Edge (Lu)                                               | 10' 2" o/c        |          |  |  |  |  |  |
| Bottom Edge (Lu)                                            | 10' 2" o/c        |          |  |  |  |  |  |
| •Maximum allowable bracing intervals based on applied load. |                   |          |  |  |  |  |  |

#### Connector: Simpson Strong-Tie

| Support         Model         Seat Length         Top Fasteners         Face Fasteners         Member Fasteners         Accessories           1 - Face Mount Hanger         HHUS48         3.00"         N/A         22-10d         8-10d | 1 5                   |        |             |               |                |                  |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|-------------|---------------|----------------|------------------|-------------|
| 1 - Face Mount Hanger HHUS48 3.00" N/A 22-10d 8-10d                                                                                                                                                                                       | Support               | Model  | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
|                                                                                                                                                                                                                                           | 1 - Face Mount Hanger | HHUS48 | 3.00"       | N/A           | 22-10d         | 8-10d            |             |

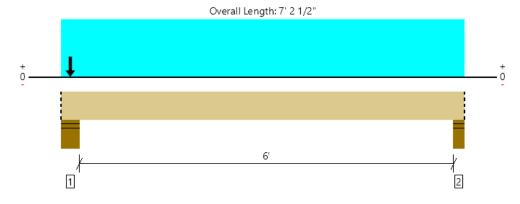
• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                       |                     |                 | Dead   | Floor Live | Snow   |            |
|-----------------------|---------------------|-----------------|--------|------------|--------|------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.00)     | (1.15) | Comments   |
| 0 - Self Weight (PLF) | 5 1/2" to 10' 7"    | N/A             | 13.0   |            |        |            |
| 1 - Uniform (PSF)     | 0 to 10' 7" (Front) | 1'              | 12.0   | 40.0       | -      | Floor Load |
| 2 - Uniform (PSF)     | 0 to 10' 7" (Front) | 9'              | 12.0   | -          | -      | Wall Load  |
| 3 - Uniform (PSF)     | 0 to 10' 7" (Front) | 14'             | 16.0   | -          | 30.0   | Roof Load  |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator Job Notes Travis Michaud QCE (206) 957-3917 tmichaud@quantumce.com



7/29/2022 2:54:01 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.2.2 File Name: 22252.01 - 42255 Intrachat Page 35 / 75







All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed       | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|---------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 19793 @ 7 1/2"    | 20081 (9.00") | Passed (99%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 666 @ 1' 8 7/8"   | 12053         | Passed (6%)     | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Moment (Ft-lbs)       | 1619 @ 3' 9"      | 29854         | Passed (5%)     | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Live Load Defl. (in)  | 0.007 @ 3' 9"     | 0.156         | Passed (L/999+) |      | 1.0 D + 1.0 L (All Spans)   |
| Total Load Defl. (in) | 0.010 @ 3' 9"     | 0.313         | Passed (L/999+) |      | 1.0 D + 1.0 L (All Spans)   |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

· Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

|                                              | Bearing Length |               |               |               | Loads to Su   |               |          |             |
|----------------------------------------------|----------------|---------------|---------------|---------------|---------------|---------------|----------|-------------|
| Supports                                     | Total          | Available     | Required      | Dead          | Floor Live    | Snow          | Factored | Accessories |
| 1 - Stud wall - SPF                          | 9.00"          | 9.00"         | 8.87"         | 8675          | 1114          | 11118         | 19793    | Blocking    |
| 2 - Stud wall - SPF                          | 5.50"          | 5.50"         | 1.50"         | 316           | 830           | -             | 1146     | Blocking    |
| Blocking Panels are assumed to carry no load | s applied dire | tly above the | m and the ful | load is appli | ed to the mer | nher heina de | signed.  |             |

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 7' 3" o/c         |          |
| Bottom Edge (Lu) | 7' 3" o/c         |          |
| Bottom Edge (Lu) |                   |          |

Maximum allowable bracing intervals based on applied load.

| Vertical Loads        | Location (Side)        | Tributary Width | Dead<br>(0.90) | Floor Live<br>(1.00) | Snow<br>(1.15) | Comments                                                 |
|-----------------------|------------------------|-----------------|----------------|----------------------|----------------|----------------------------------------------------------|
| 0 - Self Weight (PLF) | 0 to 7' 2 1/2"         | N/A             | 19.5           |                      |                |                                                          |
| 1 - Uniform (PSF)     | 0 to 7' 2 1/2" (Front) | 6'              | 12.0           | 40.0                 | -              | Floor Load                                               |
| 2 - Point (lb)        | 2" (Front)             | N/A             | 6427           | -                    | 8869           | Linked from: RB10:<br>Clear Story<br>Transfer, Support 2 |
| 3 - Point (lb)        | 2" (Front)             | N/A             | 1905           | 214                  | 2249           | Linked from: 2B5:<br>Kitchen Grid 5,<br>Support 1        |

#### Weyerhaeuser Notes

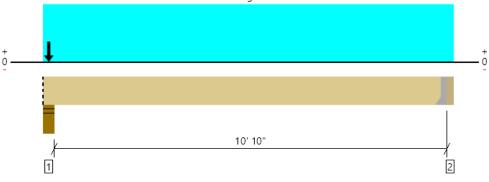
Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designed to circumvent the need for a design professional as determined by the authority having jurisdiction. The designed to circumvent the need for a design professional as determined by the authority having jurisdiction. The designed to circumvent the need for a design professional as determined by the authority having jurisdiction. The designed to circumvent the need for a design professional as determined by the authority having jurisdiction. The designed to circumvent the need for a design professional as determined by the authority having jurisdiction. The designed to circumvent the need for a design professional as determined by the authority having jurisdiction. The designed to circumvent the need for a design professional as determined by the authority having jurisdiction. The designed to circumvent the need for a design professional as determined by the authority having jurisdiction. The designed to circumvent the need for a design professional as determined by the authority having jurisdiction. The designed to circumvent the need for a design professional as determined by the authority having jurisdiction. The designed to circumvent the need for a design professional as determined by the authority having jurisdiction. The designed to circumvent the need for a design professional as determined by the authority having jurisdiction. The designed to circumvent the need for a design professional as determined by the authority having jurisdiction. The designed to circumvent the need for a design professional as determined by the authority having jurisdiction. The designed to circumvent the need for a design professional as determined by the authority having jurisdiction. The designed to circumvent the need for a design professional as determined by the authority having jurisdiction as determined by the authority having jurisdiction as determ Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>OCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |



7/29/2022 2:54:01 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.2.2 File Name: 22252.01 - 42255 Intrachat Page 36 / 75








# Second Floor, 2B7: Grid 1 1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL





All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 4450 @ 4"         | 7796 (5.50") | Passed (57%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 777 @ 10' 3 5/8"  | 8590         | Passed (9%)     | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Moment (Ft-lbs)       | 2597 @ 5' 9 3/4"  | 15953        | Passed (16%)    | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Live Load Defl. (in)  | 0.019 @ 5' 9 3/4" | 0.274        | Passed (L/999+) |      | 1.0 D + 1.0 L (All Spans)   |
| Total Load Defl. (in) | 0.083 @ 5' 9 3/4" | 0.548        | Passed (L/999+) |      | 1.0 D + 1.0 L (All Spans)   |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

|                                | Bearing Length |                     |          |      | Loads to Su |      |          |             |
|--------------------------------|----------------|---------------------|----------|------|-------------|------|----------|-------------|
| Supports                       | Total          | Available           | Required | Dead | Floor Live  | Snow | Factored | Accessories |
| 1 - Stud wall - HF             | 5.50"          | 5.50"               | 3.14"    | 2064 | 233         | 2386 | 4450     | Blocking    |
| 2 - Hanger on 11 7/8" LSL beam | 3.50"          | Hanger <sup>1</sup> | 1.50"    | 764  | 231         | -    | 995      | See note 1  |

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing                                             | Bracing Intervals | Comments |  |  |  |  |  |  |  |
|-------------------------------------------------------------|-------------------|----------|--|--|--|--|--|--|--|
| Top Edge (Lu) 11' 4" o/c                                    |                   |          |  |  |  |  |  |  |  |
| Bottom Edge (Lu) 11' 4" o/c                                 |                   |          |  |  |  |  |  |  |  |
| •Maximum allowable bracing intervals based on applied load. |                   |          |  |  |  |  |  |  |  |

#### Connector: Simpson Strong-Tie

| Support         Model         Seat Length         Top Fasteners         Face Fasteners         Member Fasteners         Accessories           2 - Face Mount Hanger         LUS410         2.00°         N/A         8-10dx1.5         6-10d | 1 5                   |        |             |               |                |                  |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|-------------|---------------|----------------|------------------|-------------|
| 2 - Face Mount Hanger LUS410 2.00" N/A 8-10dx1.5 6-10d                                                                                                                                                                                       | Support               | Model  | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
|                                                                                                                                                                                                                                              | 2 - Face Mount Hanger | LUS410 | 2.00"       | N/A           | 8-10dx1.5      | 6-10d            |             |

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

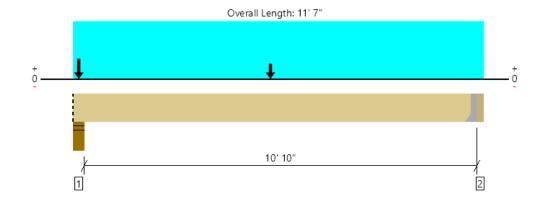
|                       |                     |                 | Dead   | Floor Live | Snow   |                                                 |
|-----------------------|---------------------|-----------------|--------|------------|--------|-------------------------------------------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.00)     | (1.15) | Comments                                        |
| 0 - Self Weight (PLF) | 0 to 11' 3 1/2"     | N/A             | 13.0   |            |        |                                                 |
| 1 - Uniform (PSF)     | 0 to 11' 7" (Front) | 1'              | 12.0   | 40.0       | -      | Default Load                                    |
| 2 - Uniform (PSF)     | 0 to 11' 7" (Front) | 9'              | 12.0   | -          | -      | Wall                                            |
| 3 - Point (lb)        | 2" (Front)          | N/A             | 1291   | -          | 2386   | Linked from: RB4:<br>Support Beam,<br>Support 1 |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| orteWEB Software Operator                                       | Job Notes |
|-----------------------------------------------------------------|-----------|
| iravis Michaud<br>DCE<br>206) 957-3917<br>michaud@quantumce.com |           |




7/29/2022 2:54:01 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.2.2 File Name: 22252.01 - 42255 Intrachat Page 37 / 75





# Second Floor, 2B7: Grid 1 + SW 1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location  | Allowed | Result          | LDF  | Load: Combination (Pattern)                      |
|-----------------------|--------------------|---------|-----------------|------|--------------------------------------------------|
| Member Reaction (lbs) | on (lbs) 4650 @ 4" |         | Passed (60%)    |      | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |
| Shear (lbs)           | 1410 @ 1' 5 3/8"   | 13743   | Passed (10%)    | 1.60 | 1.0 D + 0.7 E (All Spans)                        |
| Moment (Ft-lbs)       | 6422 @ 5' 8"       | 25525   | Passed (25%)    | 1.60 | 1.0 D + 0.7 E (All Spans)                        |
| Live Load Defl. (in)  | -0.117 @ 5' 8"     | 0.274   | Passed (L/999+) |      | 0.6 D - 0.7 E (All Spans)                        |
| Total Load Defl. (in) | 0.181 @ 5' 8"      | 0.548   | Passed (L/727)  |      | 1.0 D + 0.7 E (All Spans)                        |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

- -329 lbs uplift at support located at 11' 3 1/2". Strapping or other restraint may be required.

|                                | В     | Bearing Length Loads to Supports (lbs) |          |      |            |      |      |            |           |             |
|--------------------------------|-------|----------------------------------------|----------|------|------------|------|------|------------|-----------|-------------|
| Supports                       | Total | Available                              | Required | Dead | Floor Live | Snow | Wind | Seismic    | Factored  | Accessories |
| 1 - Stud wall - HF             | 5.50" | 5.50"                                  | 3.28"    | 2064 | 233        | 2386 | 263  | 1186/-1186 | 4650      | Blocking    |
| 2 - Hanger on 11 7/8" LSL beam | 3.50" | Hanger <sup>1</sup>                    | 1.50"    | 764  | 231        | -    | 249  | 1124/-1124 | 1551/-329 | See note 1  |

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

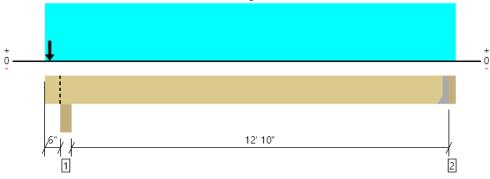
| Lateral Bracing                                            | Lateral Bracing Bracing Intervals Comments |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|--|--|--|--|
| Top Edge (Lu) 11' 4" o/c                                   |                                            |  |  |  |  |  |  |  |  |  |
| Bottom Edge (Lu) 11' 4" o/c                                |                                            |  |  |  |  |  |  |  |  |  |
| Maximum allowable bracing intervals based on applied load. |                                            |  |  |  |  |  |  |  |  |  |

| Connector: Simpson Strong-Tie                                                                                                       |        |       |     |           |       |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-----|-----------|-------|--|--|--|--|--|--|
| Support         Model         Seat Length         Top Fasteners         Face Fasteners         Member Fasteners         Accessories |        |       |     |           |       |  |  |  |  |  |  |
| 2 - Face Mount Hanger                                                                                                               | LUS410 | 2.00" | N/A | 8-10dx1.5 | 6-10d |  |  |  |  |  |  |

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                       |                     |                 | Dead   | Floor Live | Snow   | Wind   | Seismic |                                                 |
|-----------------------|---------------------|-----------------|--------|------------|--------|--------|---------|-------------------------------------------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.00)     | (1.15) | (1.60) | (1.60)  | Comments                                        |
| 0 - Self Weight (PLF) | 0 to 11' 3 1/2"     | N/A             | 13.0   |            |        |        |         |                                                 |
| 1 - Uniform (PSF)     | 0 to 11' 7" (Front) | 1'              | 12.0   | 40.0       | -      | -      | -       | Default Load                                    |
| 2 - Uniform (PSF)     | 0 to 11' 7" (Front) | 9'              | 12.0   | -          | -      | -      | -       | Wall                                            |
| 3 - Point (Ib)        | 5' 8" (Front)       | N/A             | -      | -          | -      | 512    | 2310    | SW Grid 1                                       |
| 4 - Point (lb)        | 2" (Front)          | N/A             | 1291   | -          | 2386   | -      | -       | Linked from: RB4:<br>Support Beam,<br>Support 1 |

| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>QCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |






Second Floor, 2B8: Grid C

# 1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL

#### Overall Length: 14' 1"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Allowed             | Result        | LDF             | Load: Combination (Pattern) |                                                  |
|-----------------------|---------------------|---------------|-----------------|-----------------------------|--------------------------------------------------|
| Member Reaction (lbs) | 12562 @ 8 3/4"      | 18047 (5.50") | Passed (70%)    |                             | 1.0 D + 0.525 E + 0.75 L + 0.75 S (All<br>Spans) |
| Shear (lbs)           |                     |               | Passed (21%)    | 1.00                        | 1.0 D + 1.0 L (All Spans)                        |
| Moment (Ft-lbs)       |                     |               | Passed (28%)    | 1.00                        | 1.0 D + 1.0 L (Alt Spans)                        |
| Live Load Defl. (in)  | 0.106 @ 7' 3 1/8"   | 0.327         | Passed (L/999+) |                             | 1.0 D + 1.0 L (Alt Spans)                        |
| Total Load Defl. (in) | 0.170 @ 7' 4 13/16" | 0.653         | Passed (L/922)  |                             | 1.0 D + 1.0 L (Alt Spans)                        |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

PASS

• Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

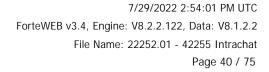
|                                | B     | earing Leng         | th       | Loads to Supports (lbs) |            |      |      |            |          |             |
|--------------------------------|-------|---------------------|----------|-------------------------|------------|------|------|------------|----------|-------------|
| Supports                       | Total | Available           | Required | Dead                    | Floor Live | Snow | Wind | Seismic    | Factored | Accessories |
| 1 - Column - DF                | 5.50" | 5.50"               | 3.83"    | 5309                    | 1988       | 4920 | 467  | 3946/-3946 | 12562    | Blocking    |
| 2 - Hanger on 11 7/8" LSL beam | 3.50" | Hanger <sup>1</sup> | 1.50"    | 1192                    | 1638       | -203 | -19  | 163/-163   | 2830     | See note 1  |

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing                                            | Bracing Intervals | Comments |  |  |  |  |  |  |
|------------------------------------------------------------|-------------------|----------|--|--|--|--|--|--|
| Top Edge (Lu)                                              | 13' 10" o/c       |          |  |  |  |  |  |  |
| Bottom Edge (Lu)                                           | 13' 10" o/c       |          |  |  |  |  |  |  |
| Maximum allowable bracing intervals based on applied load. |                   |          |  |  |  |  |  |  |

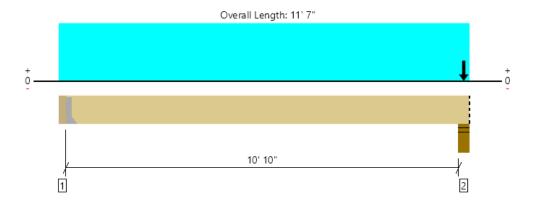

| Connector: Simpson Strong-Tie |       |             |               |                |                  |             |  |  |  |  |  |
|-------------------------------|-------|-------------|---------------|----------------|------------------|-------------|--|--|--|--|--|
| Support                       | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |  |  |  |  |  |
| 2 - Face Mount Hanger         | HU612 | 2.50"       | N/A           | 22-10d         | 8-10d            |             |  |  |  |  |  |

Weyerhaeuser

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                       |                     |                 | Dead   | Floor Live | Snow   | Wind   | Seismic |                                                    |
|-----------------------|---------------------|-----------------|--------|------------|--------|--------|---------|----------------------------------------------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.00)     | (1.15) | (1.60) | (1.60)  | Comments                                           |
| 0 - Self Weight (PLF) | 0 to 13' 9 1/2"     | N/A             | 19.5   |            |        |        |         |                                                    |
| 1 - Uniform (PSF)     | 0 to 14' 1" (Front) | 6'              | 12.0   | 40.0       | -      | -      | -       | Default Load                                       |
| 2 - Uniform (PSF)     | 0 to 14' 1" (Front) | 9'              | 12.0   | -          | -      | -      |         | Wall                                               |
| 3 - Point (Ib)        | 2" (Front)          | N/A             | -      | -          | -      | 448    | 3783    | SW Grid C                                          |
| 4 - Point (lb)        | 2" (Front)          | N/A             | 2933   | -          | 4717   | -      | -       | Linked from: RB3:<br>Cantilever Beam,<br>Support 1 |
| 5 - Point (lb)        | 2" (Front)          | N/A             | 764    | 231        | -      | -      | -       | Linked from: 2B7:<br>Grid 1, Support 2             |

| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>OCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |








# Second Floor, 2B9: Grid 1

# 1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 4450 @ 11' 3"     | 8181 (5.50") | Passed (54%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 777 @ 1' 3 3/8"   | 8590         | Passed (9%)     | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Moment (Ft-lbs)       | 2597 @ 5' 9 1/4"  | 15953        | Passed (16%)    | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Live Load Defl. (in)  | 0.019 @ 5' 9 1/4" | 0.274        | Passed (L/999+) |      | 1.0 D + 1.0 L (All Spans)   |
| Total Load Defl. (in) | 0.083 @ 5' 9 1/4" | 0.548        | Passed (L/999+) |      | 1.0 D + 1.0 L (All Spans)   |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

|                                | Bearing Length |                     |          |      | Loads to Su |      |          |             |
|--------------------------------|----------------|---------------------|----------|------|-------------|------|----------|-------------|
| Supports                       | Total          | Available           | Required | Dead | Floor Live  | Snow | Factored | Accessories |
| 1 - Hanger on 11 7/8" LSL beam | 3.50"          | Hanger <sup>1</sup> | 1.50"    | 764  | 231         | -    | 995      | See note 1  |
| 2 - Stud wall - SPF            | 5.50"          | 5.50"               | 2.99"    | 2064 | 233         | 2386 | 4450     | Blocking    |

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing                                             | Bracing Intervals | Comments |  |  |  |  |  |  |
|-------------------------------------------------------------|-------------------|----------|--|--|--|--|--|--|
| Top Edge (Lu)                                               | 11' 4" o/c        |          |  |  |  |  |  |  |
| Bottom Edge (Lu)                                            | 11' 4" o/c        |          |  |  |  |  |  |  |
| •Maximum allowable bracing intervals based on applied load. |                   |          |  |  |  |  |  |  |

#### Connector: Simpson Strong-Tie

| Support               | Model  | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
|-----------------------|--------|-------------|---------------|----------------|------------------|-------------|
| 1 - Face Mount Hanger | LUS410 | 2.00"       | N/A           | 8-10dx1.5      | 6-10d            |             |

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

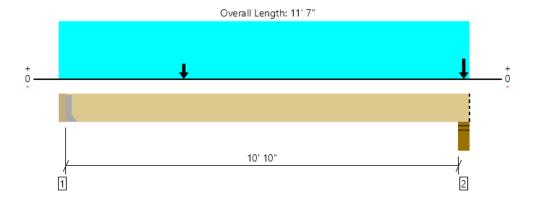
|                       |                     |                 | Dead   | Floor Live | Snow   |                                                 |
|-----------------------|---------------------|-----------------|--------|------------|--------|-------------------------------------------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.00)     | (1.15) | Comments                                        |
| 0 - Self Weight (PLF) | 3 1/2" to 11' 7"    | N/A             | 13.0   |            |        |                                                 |
| 1 - Uniform (PSF)     | 0 to 11' 7" (Front) | 1'              | 12.0   | 40.0       | -      | Default Load                                    |
| 2 - Uniform (PSF)     | 0 to 11' 7" (Front) | 9'              | 12.0   | -          | -      | Wall                                            |
| 3 - Point (lb)        | 11' 5" (Front)      | N/A             | 1291   | -          | 2386   | Linked from: RB4:<br>Support Beam,<br>Support 1 |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>QCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |
|                                                                   |           |




7/29/2022 2:54:01 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.2.2 File Name: 22252.01 - 42255 Intrachat Page 42 / 75





# Second Floor, 2B9: Grid 1 + SW 1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location  | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|--------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 4450 @ 11' 3"      | 8181 (5.50") | Passed (54%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 1739 @ 1' 3 3/8"   | 13743        | Passed (13%)    | 1.60 | 1.0 D + 0.7 E (All Spans)   |
| Moment (Ft-Ibs)       | 5318 @ 3' 6"       | 25525        | Passed (21%)    | 1.60 | 1.0 D + 0.7 E (All Spans)   |
| Live Load Defl. (in)  | -0.090 @ 5' 2 5/8" | 0.274        | Passed (L/999+) |      | 0.6 D - 0.7 E (All Spans)   |
| Total Load Defl. (in) | 0.153 @ 5' 5 1/2"  | 0.548        | Passed (L/859)  |      | 1.0 D + 0.7 E (All Spans)   |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• -684 lbs uplift at support located at 3 1/2". Strapping or other restraint may be required.

|                                | Bearing Length |                     |          | Loads to Supports (lbs) |            |      |      |            |           |             |
|--------------------------------|----------------|---------------------|----------|-------------------------|------------|------|------|------------|-----------|-------------|
| Supports                       | Total          | Available           | Required | Dead                    | Floor Live | Snow | Wind | Seismic    | Factored  | Accessories |
| 1 - Hanger on 11 7/8" LSL beam | 3.50"          | Hanger <sup>1</sup> | 1.50"    | 764                     | 231        | -    | 362  | 1632/-1632 | 1906/-684 | See note 1  |
| 2 - Stud wall - SPF            | 5.50"          | 5.50"               | 2.99"    | 2064                    | 233        | 2386 | 150  | 675/-675   | 4450      | Blocking    |

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

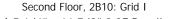
| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 11' 4" o/c        |          |
| Bottom Edge (Lu) | 11' 4" o/c        |          |
|                  |                   |          |

•Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-Tie                                                                                                       |  |          |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|--|----------|--|--|--|--|--|--|--|
| Support         Model         Seat Length         Top Fasteners         Face Fasteners         Member Fasteners         Accessories |  |          |  |  |  |  |  |  |  |
| 1 - Face Mount Hanger LUS410 2.00" N/A 8-10dx1.5 6-10d                                                                              |  |          |  |  |  |  |  |  |  |
| Defende werde de stand weter and bestmust                                                                                           |  | - f - II |  |  |  |  |  |  |  |

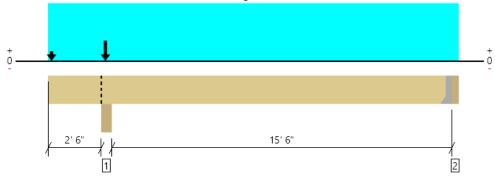
Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                       |                     |                 | Dead   | Floor Live | Snow   | Wind   | Seismic |                                                 |
|-----------------------|---------------------|-----------------|--------|------------|--------|--------|---------|-------------------------------------------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.00)     | (1.15) | (1.60) | (1.60)  | Comments                                        |
| 0 - Self Weight (PLF) | 3 1/2" to 11' 7"    | N/A             | 13.0   |            |        |        |         |                                                 |
| 1 - Uniform (PSF)     | 0 to 11' 7" (Front) | 1'              | 12.0   | 40.0       | -      | -      | -       | Default Load                                    |
| 2 - Uniform (PSF)     | 0 to 11' 7" (Front) | 9'              | 12.0   | -          | -      | -      | -       | Wall                                            |
| 3 - Point (Ib)        | 3' 6" (Front)       | N/A             | -      | -          | -      | 512    | 2307    | SW Grid 1                                       |
| 4 - Point (lb)        | 11' 5" (Front)      | N/A             | 1291   | -          | 2386   | -      | -       | Linked from: RB4:<br>Support Beam,<br>Support 1 |


 ForteWEB Software Operator
 Job Notes

 Travis Michaud
 OCE

 (206) 957-3917
 tmichaud@quantumce.com








# 1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL

#### Overall Length: 18' 8 5/8"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location   | Allowed       | Result         | LDF  | Load: Combination (Pattern)         |
|-----------------------|---------------------|---------------|----------------|------|-------------------------------------|
| Member Reaction (lbs) | 13833 @ 2' 8 9/16"  | 16816 (5.13") | Passed (82%)   |      | 1.0 D + 0.75 L + 0.75 S (All Spans) |
| Shear (lbs)           | 3188 @ 3' 11"       | 12053         | Passed (26%)   | 1.00 | 1.0 D + 1.0 L (All Spans)           |
| Moment (Ft-lbs)       | 12257 @ 10' 11 1/2" | 29854         | Passed (41%)   | 1.00 | 1.0 D + 1.0 L (Alt Spans)           |
| Live Load Defl. (in)  | 0.217 @ 10' 6 7/8"  | 0.393         | Passed (L/870) |      | 1.0 D + 1.0 L (Alt Spans)           |
| Total Load Defl. (in) | 0.353 @ 10' 8 1/2"  | 0.786         | Passed (L/535) |      | 1.0 D + 1.0 L (Alt Spans)           |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

PASS

• Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

|                                | Bearing Length |                     |          |      | Loads to Su |      |          |             |
|--------------------------------|----------------|---------------------|----------|------|-------------|------|----------|-------------|
| Supports                       | Total          | Available           | Required | Dead | Floor Live  | Snow | Factored | Accessories |
| 1 - Column - SPF               | 5.13"          | 5.13"               | 4.22"    | 7082 | 2862        | 6140 | 13833    | Blocking    |
| 2 - Hanger on 11 7/8" LSL beam | 3.50"          | Hanger <sup>1</sup> | 1.50"    | 1449 | 1956/-24    | -    | 3405     | See note 1  |

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing  | Bracing Intervals | Comments |  |  |  |  |
|------------------|-------------------|----------|--|--|--|--|
| Top Edge (Lu)    | 18' 5" o/c        |          |  |  |  |  |
| Bottom Edge (Lu) | 18' 5" o/c        |          |  |  |  |  |
|                  |                   |          |  |  |  |  |

•Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-Tie                                                                                                       |                                     |                   |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------|--|--|--|--|--|--|--|
| Support         Model         Seat Length         Top Fasteners         Face Fasteners         Member Fasteners         Accessories |                                     |                   |  |  |  |  |  |  |  |
| 2 - Face Mount Hanger HHUS5.50/10 3.00" N/A 30-10d 10-10d                                                                           |                                     |                   |  |  |  |  |  |  |  |
| - Defer to manufacturer notes and instructi                                                                                         | and for proper installation and use | of all approators |  |  |  |  |  |  |  |

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                       |                         |                 | Dead   | Floor Live | Snow   |                                         |
|-----------------------|-------------------------|-----------------|--------|------------|--------|-----------------------------------------|
| Vertical Loads        | Location (Side)         | Tributary Width | (0.90) | (1.00)     | (1.15) | Comments                                |
| 0 - Self Weight (PLF) | 0 to 18' 5 1/8"         | N/A             | 19.5   |            |        |                                         |
| 1 - Uniform (PSF)     | 0 to 18' 8 5/8" (Front) | 6'              | 12.0   | 40.0       |        | Default Load                            |
| 2 - Uniform (PSF)     | 0 to 18' 8 5/8" (Front) | 9'              | 12.0   | -          |        | Wall                                    |
| 3 - Point (lb)        | 2" (Front)              | N/A             | 764    | 231        | -      | Linked from: 2B9:<br>Grid 1, Support 1  |
| 4 - Point (lb)        | 2' 8" (Front)           | N/A             | 4039   | -          | 6140   | Linked from: RB11:<br>Grid I, Support 1 |

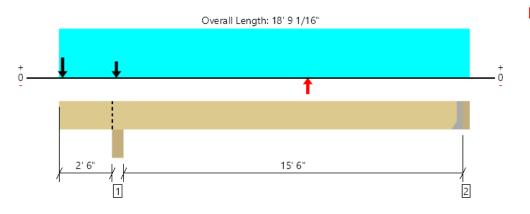
 ForteWEB Software Operator
 Job Notes

 Travis Michaud
 QCE

 (206) 957-3917
 tmichaud@quantumce.com



7/29/2022 2:54:01 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.2.2 File Name: 22252.01 - 42255 Intrachat Page 45 / 75




# Second Floor, 2B10: Grid I + SW

# 1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL



# ok, strap provided to resist uplift



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed       | Result          | LDF  | Load: Combination (Pattern)                      |
|-----------------------|-------------------|---------------|-----------------|------|--------------------------------------------------|
| Member Reaction (lbs) | 18636 @ 2' 8 3/4" | 18211 (5.55") | Passed (102%)   |      | 1.0 D + 0.525 E + 0.75 L + 0.75 S (Alt<br>Spans) |
| Shear (lbs)           | 7695 @ 1' 6 1/8"  | 19285         | Passed (40%)    | 1.60 | 1.0 D + 0.7 E (All Spans)                        |
| Moment (Ft-lbs)       | 33314 @ 11' 6"    | 47766         | Passed (70%)    | 1.60 | 1.0 D - 0.7 E (All Spans)                        |
| Live Load Defl. (in)  | 0.546 @ 0         | 0.200         | Failed (2L/120) |      | 1.0 D + 0.7 E (All Spans)                        |
| Total Load Defl. (in) | 0.543 @ 0         | 0.273         | Failed (2L/120) |      | 0.6 D + 0.7 E (All Spans)                        |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (0.2") and TL (2L/240).

• Upward deflection on left cantilever exceeds overhang deflection criteria.

• Allowed moment does not reflect the adjustment for the beam stability factor.

An excessive uplift of -2036 lbs at support located at 2' 8 3/4" failed this product.

An excessive uplift of -3411 lbs at support located at 18' 5 9/16" failed this product.

• Upward deflection on left cantilever exceeds 0.4".

|                                | Bearing Length |                     |          | Loads to Supports (lbs) |            |      |           |            |                 |             |
|--------------------------------|----------------|---------------------|----------|-------------------------|------------|------|-----------|------------|-----------------|-------------|
| Supports                       | Total          | Available           | Required | Dead                    | Floor Live | Snow | Wind      | Seismic    | Factored        | Accessories |
| 1 - Column - LSL               | 5.55"          | 5.55"               | 5.68"    | 7977                    | 3137       | 6140 | 2314/-881 | 9746/-9746 | 18636/-<br>2036 | Blocking    |
| 2 - Hanger on 11 7/8" LSL beam | 3.50"          | Hanger <sup>1</sup> | 1.75"    | 1325                    | 1958/-62   | -    | -1434     | 6009/-6009 | 5849/-<br>3411  | See note 1  |

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 18' 6" o/c        |          |
| Bottom Edge (Lu) | 18' 6" o/c        |          |

Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-Tie                                                                                                       |                                     |                   |  |   |  |   |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------|--|---|--|---|--|--|--|
| Support         Model         Seat Length         Top Fasteners         Face Fasteners         Member Fasteners         Accessories |                                     |                   |  |   |  |   |  |  |  |
| 2 - Face Mount Hanger HHUS5.50/10 3.00" N/A 30-16d 10-16d                                                                           |                                     |                   |  |   |  |   |  |  |  |
| Befor to manufacturar notae and instructi                                                                                           | one for proper installation and use | of all connectors |  | • |  | • |  |  |  |

Weyerhaeuser

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>OCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |

|                       |                          |                 | Dead   | Floor Live | Snow   | Wind   | Seismic |                                         |
|-----------------------|--------------------------|-----------------|--------|------------|--------|--------|---------|-----------------------------------------|
| Vertical Loads        | Location (Side)          | Tributary Width | (0.90) | (1.00)     | (1.15) | (1.60) | (1.60)  | Comments                                |
| 0 - Self Weight (PLF) | 0 to 18' 5 9/16"         | N/A             | 19.5   |            |        |        |         |                                         |
| 1 - Uniform (PSF)     | 0 to 18' 9 1/16" (Front) | 6'              | 12.0   | 40.0       | -      | -      | -       | Default Load                            |
| 2 - Uniform (PSF)     | 0 to 18' 9 1/16" (Front) | 9'              | 12.0   | -          | -      | -      | -       | Wall                                    |
| 3 - Point (Ib)        | 2" (Front)               | N/A             | -      | -          | -      | 1990   | 8380    | SW Grid I                               |
| 4 - Point (Ib)        | 11' 6" (Front)           | N/A             | -      | -          | -      | -1990  | -8330   | SW Grid I                               |
| 5 - Point (Ib)        | 2" (Front)               | N/A             | 764    | 231        | -      | -      | -       | SW Grid I                               |
| 6 - Point (lb)        | 2" (Front)               | N/A             | 764    | 231        | -      | -      | -       | Linked from: 2B9:<br>Grid 1, Support 1  |
| 7 - Point (lb)        | 2' 8" (Front)            | N/A             | 4039   | -          | 6140   | -      | -       | Linked from: RB11:<br>Grid I, Support 1 |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator |
|----------------------------|
| Travis Michaud             |
| QCE                        |
| (206) 957-3917             |
| tmichaud@quantumce.com     |

Job Notes







#### Second Floor, 2B11: Grid G

# 1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| ,                     |                   |              |                |      |                             |
|-----------------------|-------------------|--------------|----------------|------|-----------------------------|
| Design Results        | Actual @ Location | Allowed      | Result         | LDF  | Load: Combination (Pattern) |
| Member Reaction (lbs) | 3278 @ 4"         | 6024 (4.25") | Passed (54%)   |      | 1.0 D + 1.0 L (All Spans)   |
| Shear (lbs)           | 2492 @ 1' 5 3/8"  | 8590         | Passed (29%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Moment (Ft-lbs)       | 8450 @ 5' 8 1/2"  | 15953        | Passed (53%)   | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Live Load Defl. (in)  | 0.197 @ 5' 8 1/2" | 0.269        | Passed (L/654) |      | 1.0 D + 1.0 L (All Spans)   |
| Total Load Defl. (in) | 0.262 @ 5' 8 1/2" | 0.538        | Passed (L/492) |      | 1.0 D + 1.0 L (All Spans)   |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

|                    | Bearing Length |           |          | Loads | to Supports |          |                  |
|--------------------|----------------|-----------|----------|-------|-------------|----------|------------------|
| Supports           | Total          | Available | Required | Dead  | Floor Live  | Factored | Accessories      |
| 1 - Stud wall - HF | 5.50"          | 4.25"     | 2.31"    | 826   | 2512        | 3338     | 1 1/4" Rim Board |
| 2 - Stud wall - HF | 5.50"          | 4.25"     | 2.31"    | 826   | 2512        | 3338     | 1 1/4" Rim Board |

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 11' 3" o/c        |          |
| Bottom Edge (Lu) | 11' 3" o/c        |          |

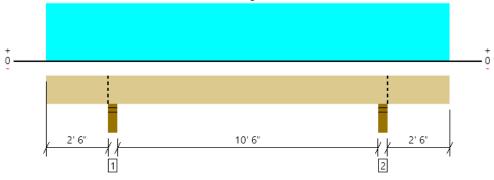
•Maximum allowable bracing intervals based on applied load.

|                       |                      |                 | Dead   | Floor Live |              |
|-----------------------|----------------------|-----------------|--------|------------|--------------|
| Vertical Loads        | Location (Side)      | Tributary Width | (0.90) | (1.00)     | Comments     |
| 0 - Self Weight (PLF) | 1 1/4" to 11' 3 3/4" | N/A             | 13.0   |            |              |
| 1 - Uniform (PSF)     | 0 to 11' 5" (Front)  | 11'             | 12.0   | 40.0       | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>OCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |








# Second Floor, 2B11: Grid G - Cont 1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL

## Overall Length: 16' 3"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed      | Result         | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|----------------|------|-----------------------------|
| Member Reaction (lbs) | 4899 @ 2' 8 1/4"  | 6379 (4.50") | Passed (77%)   |      | 1.0 D + 1.0 L (Adj Spans)   |
| Shear (lbs)           | 2638 @ 3' 10 3/8" | 8590         | Passed (31%)   | 1.00 | 1.0 D + 1.0 L (Adj Spans)   |
| Moment (Ft-lbs)       | 8124 @ 8' 1 1/2"  | 15953        | Passed (51%)   | 1.00 | 1.0 D + 1.0 L (Alt Spans)   |
| Live Load Defl. (in)  | 0.206 @ 8' 1 1/2" | 0.272        | Passed (L/633) |      | 1.0 D + 1.0 L (Alt Spans)   |
| Total Load Defl. (in) | 0.256 @ 8' 1 1/2" | 0.544        | Passed (L/509) |      | 1.0 D + 1.0 L (Alt Spans)   |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

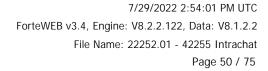
• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

|                                                                                                                                      | Bearing Length |           |          | Loads to Supports (lbs) |            |          |             |  |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|----------|-------------------------|------------|----------|-------------|--|
| Supports                                                                                                                             | Total          | Available | Required | Dead                    | Floor Live | Factored | Accessories |  |
| 1 - Stud wall - HF                                                                                                                   | 4.50"          | 4.50"     | 3.46"    | 1178                    | 3721       | 4899     | Blocking    |  |
| 2 - Stud wall - HF                                                                                                                   | 4.50"          | 4.50"     | 3.46"    | 1178                    | 3721       | 4899     | Blocking    |  |
| Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. |                |           |          |                         |            |          |             |  |

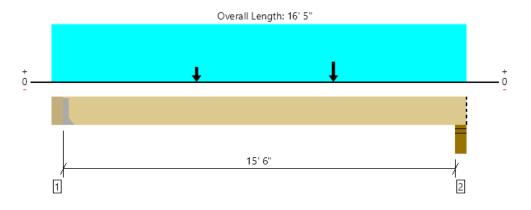
| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 16' 3" o/c        |          |
| Bottom Edge (Lu) | 16' 3" o/c        |          |

•Maximum allowable bracing intervals based on applied load.


|                       |                     |                 | Dead   | Floor Live |              |
|-----------------------|---------------------|-----------------|--------|------------|--------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.00)     | Comments     |
| 0 - Self Weight (PLF) | 0 to 16' 3"         | N/A             | 13.0   |            |              |
| 1 - Uniform (PSF)     | 0 to 16' 3" (Front) | 11'             | 12.0   | 40.0       | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


Weyerhaeuser

| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>OCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |





# Second Floor, 2B12: Slider Hdr Grid I 1 piece(s) 5 1/4" x 18" 2.2E Parallam® PSL



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location  | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|--------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 5461 @ 5 1/2"      | 5461 (1.66") | Passed (100%)   |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 5816 @ 14' 5 1/2"  | 21011        | Passed (28%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 29130 @ 11'        | 75322        | Passed (39%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.144 @ 8' 4 9/16" | 0.521        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.259 @ 8' 4 3/8"  | 0.781        | Passed (L/725)  |      | 1.0 D + 1.0 S (All Spans)   |

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

|                           | Bearing Length |                     | Loads to Supports (lbs) |      |      |          |             |
|---------------------------|----------------|---------------------|-------------------------|------|------|----------|-------------|
| Supports                  | Total          | Available           | Required                | Dead | Snow | Factored | Accessories |
| 1 - Hanger on 18" HF beam | 5.50"          | Hanger <sup>1</sup> | 1.66"                   | 2584 | 2906 | 5491     | See note 1  |
| 2 - Stud wall - HF        | 5.50"          | 5.50"               | 2.82"                   | 2764 | 3236 | 5999     | Blocking    |

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing                                             | Bracing Intervals | Comments |  |  |
|-------------------------------------------------------------|-------------------|----------|--|--|
| Top Edge (Lu)                                               | 16' o/c           |          |  |  |
| Bottom Edge (Lu)                                            | 16' o/c           |          |  |  |
| •Maximum allowable bracing intervals based on applied load. |                   |          |  |  |

#### Connector: Simpson Strong-Tie

| Support               | Model       | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
|-----------------------|-------------|-------------|---------------|----------------|------------------|-------------|
| 1 - Face Mount Hanger | HGUS5.50/14 | 4.00"       | N/A           | 66-10d         | 22-10d           |             |

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                       |                     |                 | Dead   | Snow   |                                                |
|-----------------------|---------------------|-----------------|--------|--------|------------------------------------------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.15) | Comments                                       |
| 0 - Self Weight (PLF) | 5 1/2" to 16' 5"    | N/A             | 29.5   |        |                                                |
| 1 - Uniform (PSF)     | 0 to 16' 5" (Front) | 8'              | 8.0    | -      | Glazing                                        |
| 2 - Point (Ib)        | 5' 7" (Front)       | N/A             | 1672   | 2619   | Linked from: RB6:<br>Clear Story, Support<br>1 |
| 3 - Point (lb)        | 11' (Front)         | N/A             | 2154   | 3523   | Linked from: RB7:<br>Clear Story, Support<br>1 |

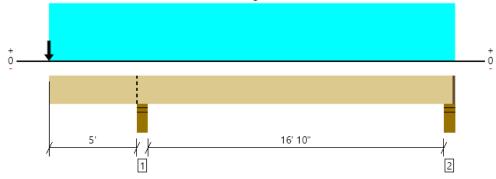
#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>OCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |




7/29/2022 2:54:01 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.2.2 File Name: 22252.01 - 42255 Intrachat Page 51 / 75





# Second Floor, 2b13: Cantilever Beam Grid I 1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL

Overall Length: 22' 9"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 2124 @ 5' 2 3/4"  | 7796 (5.50") | Passed (27%)    |      | 1.0 D + 1.0 L (All Spans)   |
| Shear (lbs)           | 1161 @ 4' 1/8"    | 8590         | Passed (14%)    | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Moment (Ft-lbs)       | -5595 @ 5' 2 3/4" | 15953        | Passed (35%)    | 1.00 | 1.0 D + 1.0 L (All Spans)   |
| Live Load Defl. (in)  | 0.320 @ 0         | 0.349        | Passed (2L/392) |      | 1.0 D + 1.0 L (Alt Spans)   |
| Total Load Defl. (in) | 0.451 @ 0         | 0.523        | Passed (2L/278) |      | 1.0 D + 1.0 L (Alt Spans)   |

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

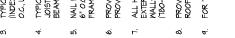
|                    | Bearing Length |           |          | Loads to Supports (lbs) |            |          |                  |
|--------------------|----------------|-----------|----------|-------------------------|------------|----------|------------------|
| Supports           | Total          | Available | Required | Dead                    | Floor Live | Factored | Accessories      |
| 1 - Stud wall - HF | 5.50"          | 5.50"     | 1.50"    | 809                     | 1315       | 2124     | Blocking         |
| 2 - Stud wall - HF | 5.50"          | 4.25"     | 1.50"    | 98                      | 357/-198   | 456/-100 | 1 1/4" Rim Board |

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing                                           | Bracing Intervals | Comments |  |  |
|-----------------------------------------------------------|-------------------|----------|--|--|
| Top Edge (Lu)                                             | 22' 8" o/c        |          |  |  |
| Bottom Edge (Lu)                                          | 22' 8" o/c        |          |  |  |
| Maximum allowable bracing intervals based on applied load |                   |          |  |  |

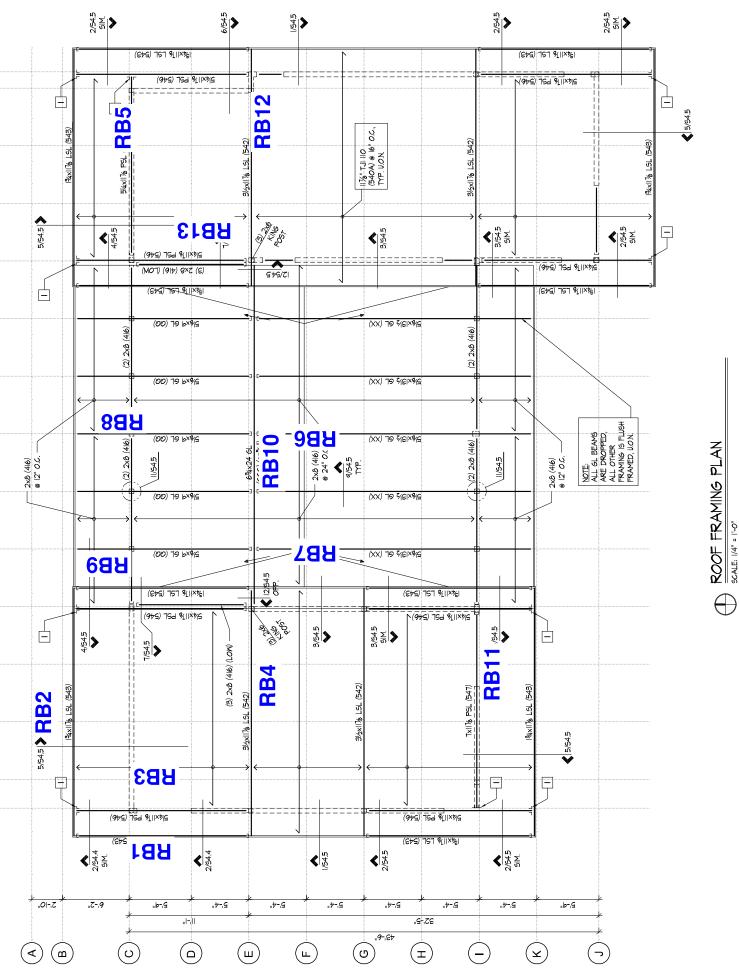
Maximum allowable bracing intervals based on applied load.


|                       |                     |                 | Dead   | Floor Live |          |
|-----------------------|---------------------|-----------------|--------|------------|----------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.00)     | Comments |
| 0 - Self Weight (PLF) | 0 to 22' 7 3/4"     | N/A             | 13.0   |            |          |
| 1 - Point (Ib)        | 0 (Front)           | N/A             | 340    | 560        | Beams    |
| 2 - Uniform (PSF)     | 0 to 22' 9" (Front) | 1'              | 12.0   | 40.0       |          |

# Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

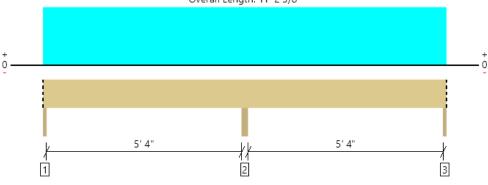
| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>OCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |








KEY NOTE INVE








# Roof, Clear Story Roof 1 piece(s) 2 x 8 SPF No.1/No.2 @ 24" OC

#### Overall Length: 11' 2 5/8"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location  | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|--------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 638 @ 5' 7 5/16"   | 1992 (3.13") | Passed (32%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 251 @ 6' 4 1/8"    | 1126         | Passed (22%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-Ibs)       | -354 @ 5' 7 5/16"  | 1521         | Passed (23%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.011 @ 8' 7 7/8"  | 0.185        | Passed (L/999+) |      | 1.0 D + 1.0 S (Alt Spans)   |
| Total Load Defl. (in) | 0.015 @ 8' 8 7/16" | 0.277        | Passed (L/999+) |      | 1.0 D + 1.0 S (Alt Spans)   |

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

|                | Bearing Length |           |          | Loads to Supports (lbs) |      |          |             |
|----------------|----------------|-----------|----------|-------------------------|------|----------|-------------|
| Supports       | Total          | Available | Required | Dead                    | Snow | Factored | Accessories |
| 1 - Beam - HF  | 1.75"          | 1.75"     | 1.50"    | 69                      | 139  | 208      | Blocking    |
| 2 - Beam - SPF | 3.13"          | 3.13"     | 1.50"    | 222                     | 416  | 638      | None        |
| 3 - Beam - HF  | 1.75"          | 1.75"     | 1.50"    | 69                      | 139  | 208      | Blocking    |

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

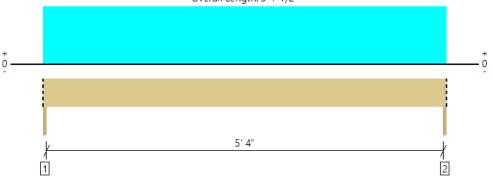
| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 11' 3" o/c        |          |
| Bottom Edge (Lu) | 11' 3" o/c        |          |

•Maximum allowable bracing intervals based on applied load.

|                   |                 |         | Dead   | Snow   |              |
|-------------------|-----------------|---------|--------|--------|--------------|
| Vertical Load     | Location (Side) | Spacing | (0.90) | (1.15) | Comments     |
| 1 - Uniform (PSF) | 0 to 11' 2 5/8" | 24"     | 16.0   | 30.0   | Default Load |

# Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>QCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |





# Roof, Clear Story Roof - Simple 1 piece(s) 2 x 6 SPF No.1/No.2 @ 16" OC

#### Overall Length: 5' 7 1/2"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 173 @ 3/4"        | 1063 (1.75") | Passed (16%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 135 @ 7 1/4"      | 854          | Passed (16%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-Ibs)       | 232 @ 2' 9 3/4"   | 948          | Passed (24%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.028 @ 2' 9 3/4" | 0.183        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.043 @ 2' 9 3/4" | 0.275        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

|               | Bearing Length |           |          | Loads to Supports (lbs) |      |          |             |
|---------------|----------------|-----------|----------|-------------------------|------|----------|-------------|
| Supports      | Total          | Available | Required | Dead                    | Snow | Factored | Accessories |
| 1 - Beam - HF | 1.75"          | 1.75"     | 1.50"    | 60                      | 113  | 173      | Blocking    |
| 2 - Beam - HF | 1.75"          | 1.75"     | 1.50"    | 60                      | 113  | 173      | Blocking    |

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing                                            | Bracing Intervals | Comments |  |  |  |
|------------------------------------------------------------|-------------------|----------|--|--|--|
| Top Edge (Lu)                                              | 5' 8" o/c         |          |  |  |  |
| Bottom Edge (Lu)                                           | 5' 8" o/c         |          |  |  |  |
| -Maximum alloughte breezes intervale based on applied load |                   |          |  |  |  |

•Maximum allowable bracing intervals based on applied load.

|                   |                 |         | Dead   | Snow   |              |
|-------------------|-----------------|---------|--------|--------|--------------|
| Vertical Load     | Location (Side) | Spacing | (0.90) | (1.15) | Comments     |
| 1 - Uniform (PSF) | 0 to 5' 7 1/2"  | 16"     | 16.0   | 30.0   | Default Load |

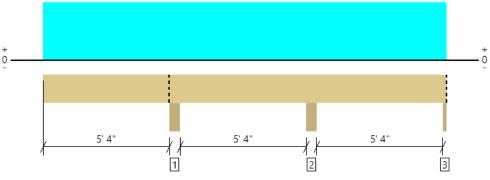
#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>QCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |






# Cantilever

#### Roof, Clear Story Roof - Cantilever 1 piece(s) 2 x 8 SPF No.1/No.2 @ 16" OC



lece(s) 2 x 8 SPF N0.17 N0.2 @ 10





All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 686 @ 5' 6 9/16"  | 3113 (5.13") | Passed (22%)    |      | 1.0 D + 1.0 S (Adj Spans)   |
| Shear (lbs)           | 295 @ 6' 4 3/8"   | 1126         | Passed (26%)    | 1.15 | 1.0 D + 1.0 S (Adj Spans)   |
| Moment (Ft-lbs)       | -944 @ 5' 6 9/16" | 1521         | Passed (62%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.265 @ 0         | 0.370        | Passed (2L/502) |      | 1.0 D + 1.0 S (Alt Spans)   |
| Total Load Defl. (in) | 0.397 @ 0         | 0.555        | Passed (2L/336) |      | 1.0 D + 1.0 S (Alt Spans)   |

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

Overhang deflection criteria: LL (2L/360) and TL (2L/240).

A 15% increase in the moment capacity has been added to account for repetitive member usage.
Applicable calculations are based on NDS.

|               | Bearing Length |           | Loads to Supports (lbs) |      |      |          |             |
|---------------|----------------|-----------|-------------------------|------|------|----------|-------------|
| Supports      | Total          | Available | Required                | Dead | Snow | Factored | Accessories |
| 1 - Beam - HF | 5.13"          | 5.13"     | 1.50"                   | 236  | 450  | 686      | Blocking    |
| 2 - Beam - HF | 5.13"          | 5.13"     | 1.50"                   | 66   | 204  | 270      | None        |
| 3 - Beam - HF | 1.75"          | 1.75"     | 1.50"                   | 61   | 121  | 182      | Blocking    |

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

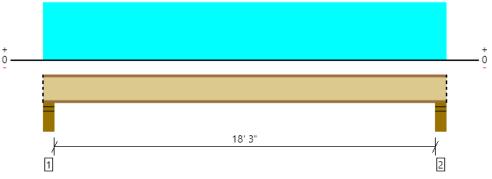
| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | Continuous        |          |
| Bottom Edge (Lu) | Continuous        |          |

|                   |                 |         | Dead   | Snow   |              |
|-------------------|-----------------|---------|--------|--------|--------------|
| Vertical Load     | Location (Side) | Spacing | (0.90) | (1.15) | Comments     |
| 1 - Uniform (PSF) | 0 to 17'        | 16"     | 16.0   | 30.0   | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>QCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |






# Roof, Typical Roof Joist 1 piece(s) 11 7/8" TJI ® 110 @ 16" OC



Overall Length: 19' 2"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location Allowed |              | Result         | LDF  | Load: Combination (Pattern) |
|-----------------------|---------------------------|--------------|----------------|------|-----------------------------|
| Member Reaction (lbs) | 588 @ 4 1/2"              | 1581 (3.50") | Passed (37%)   | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 560 @ 5 1/2"              | 1794         | Passed (31%)   | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 2600 @ 9' 7"              | 3634         | Passed (72%)   | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.418 @ 9' 7"             | 0.614        | Passed (L/528) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.641 @ 9' 7"             | 0.921        | Passed (L/345) |      | 1.0 D + 1.0 S (All Spans)   |

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

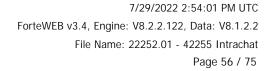
|                                                                                                                                     | Bearing Length |           |          | Loads | to Supports |          |             |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|----------|-------|-------------|----------|-------------|
| Supports                                                                                                                            | Total          | Available | Required | Dead  | Snow        | Factored | Accessories |
| 1 - Stud wall - HF                                                                                                                  | 5.50"          | 5.50"     | 1.75"    | 204   | 383         | 588      | Blocking    |
| 2 - Stud wall - HF                                                                                                                  | 5.50"          | 5.50"     | 1.75"    | 204   | 383         | 588      | Blocking    |
| Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed |                |           |          |       |             |          |             |

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 3' 6" o/c         |          |
| Bottom Edge (Lu) | 19' 2" o/c        |          |

•TJI joists are only analyzed using Maximum Allowable bracing solutions.

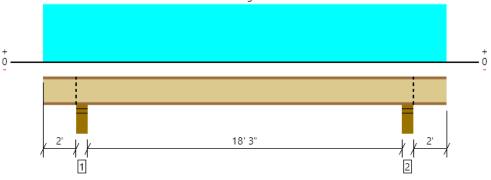
•Maximum allowable bracing intervals based on applied load.


|                   |             |         | Dead   | Snow   |              |
|-------------------|-------------|---------|--------|--------|--------------|
| Vertical Load     | Location    | Spacing | (0.90) | (1.15) | Comments     |
| 1 - Uniform (PSF) | 0 to 19' 2" | 16"     | 16.0   | 30.0   | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Weyerhaeuser


| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>QCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |





#### Roof, Typical Roof Joist - Cantilever Ends 1 piece(s) 11 7/8" TJI ® 110 @ 16" OC

#### Overall Length: 23' 2"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed      | Result         | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|----------------|------|-----------------------------|
| Member Reaction (lbs) | 713 @ 2' 2 3/4"   | 2703 (5.25") | Passed (26%)   | 1.15 | 1.0 D + 1.0 S (Adj Spans)   |
| Shear (lbs)           | 540 @ 2' 5 1/2"   | 1794         | Passed (30%)   | 1.15 | 1.0 D + 1.0 S (Adj Spans)   |
| Moment (Ft-lbs)       | 2581 @ 11' 7"     | 3634         | Passed (71%)   | 1.15 | 1.0 D + 1.0 S (Alt Spans)   |
| Live Load Defl. (in)  | 0.430 @ 11' 7"    | 0.624        | Passed (L/522) |      | 1.0 D + 1.0 S (Alt Spans)   |
| Total Load Defl. (in) | 0.652 @ 11' 7"    | 0.935        | Passed (L/344) |      | 1.0 D + 1.0 S (Alt Spans)   |

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Upward deflection on left and right cantilevers exceeds overhang deflection criteria.

• Allowed moment does not reflect the adjustment for the beam stability factor.

|                    | Bearing Length |           |          | Loads | to Supports |          |             |
|--------------------|----------------|-----------|----------|-------|-------------|----------|-------------|
| Supports           | Total          | Available | Required | Dead  | Snow        | Factored | Accessories |
| 1 - Stud wall - HF | 5.50"          | 5.50"     | 3.50"    | 247   | 466         | 713      | Blocking    |
| 2 - Stud wall - HF | 5.50"          | 5.50"     | 3.50"    | 247   | 466         | 713      | Blocking    |

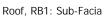
• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 3' 6" o/c         |          |
| Bottom Edge (Lu) | 7' 4" o/c         |          |
|                  |                   | 1        |

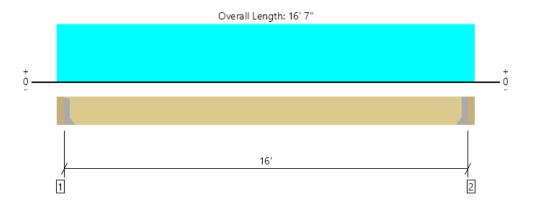
•TJI joists are only analyzed using Maximum Allowable bracing solutions.

•Maximum allowable bracing intervals based on applied load.

|                   |             |         | Dead   | Snow   |              |
|-------------------|-------------|---------|--------|--------|--------------|
| Vertical Load     | Location    | Spacing | (0.90) | (1.15) | Comments     |
| 1 - Uniform (PSF) | 0 to 23' 2" | 16"     | 16.0   | 30.0   | Default Load |


#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>QCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |







#### 1 piece(s) 1 3/4" x 11 7/8" 1.55E TimberStrand® LSL



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 604 @ 3 1/2"      | 2363 (1.50") | Passed (26%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 529 @ 1' 3 3/8"   | 4939         | Passed (11%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 2416 @ 8' 3 1/2"  | 9173         | Passed (26%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.186 @ 8' 3 1/2" | 0.533        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.311 @ 8' 3 1/2" | 0.800        | Passed (L/617)  |      | 1.0 D + 1.0 S (All Spans)   |

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

|                                | Bearing Length |                     |          | Loads | to Supports |          |             |
|--------------------------------|----------------|---------------------|----------|-------|-------------|----------|-------------|
| Supports                       | Total          | Available           | Required | Dead  | Snow        | Factored | Accessories |
| 1 - Hanger on 11 7/8" LSL beam | 3.50"          | Hanger <sup>1</sup> | 1.50"    | 251   | 373         | 624      | See note 1  |
| 2 - Hanger on 11 7/8" LSL beam | 3.50"          | Hanger <sup>1</sup> | 1.50"    | 251   | 373         | 624      | See note 1  |

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing                                  | Bracing Intervals | Comments |  |  |  |  |
|--------------------------------------------------|-------------------|----------|--|--|--|--|
| Top Edge (Lu)                                    | 15' 5" o/c        |          |  |  |  |  |
| Bottom Edge (Lu)                                 | 16' o/c           |          |  |  |  |  |
| Maximum allowable harving internal paradical and |                   |          |  |  |  |  |

Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-1 | ie |
|-----------------------------|----|
|                             |    |

| Model       | Seat Length | Top Fasteners     | Face Fasteners        | Member Fasteners                | Accessories                               |
|-------------|-------------|-------------------|-----------------------|---------------------------------|-------------------------------------------|
| IUS1.81/9.5 | 2.00"       | N/A               | 8-10dx1.5             | 2-10dx1.5                       |                                           |
| IUS1.81/9.5 | 2.00"       | N/A               | 8-10dx1.5             | 2-10dx1.5                       |                                           |
|             | IUS1.81/9.5 | IUS1.81/9.5 2.00" | IUS1.81/9.5 2.00" N/A | IUS1.81/9.5 2.00" N/A 8-10dx1.5 | IUS1.81/9.5 2.00" N/A 8-10dx1.5 2-10dx1.5 |

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                       |                      |                 | Dead   | Snow   |              |
|-----------------------|----------------------|-----------------|--------|--------|--------------|
| Vertical Loads        | Location (Side)      | Tributary Width | (0.90) | (1.15) | Comments     |
| 0 - Self Weight (PLF) | 3 1/2" to 16' 3 1/2" | N/A             | 6.5    |        |              |
| 1 - Uniform (PSF)     | 0 to 16' 7" (Front)  | 1' 6"           | 16.0   | 30.0   | Default Load |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

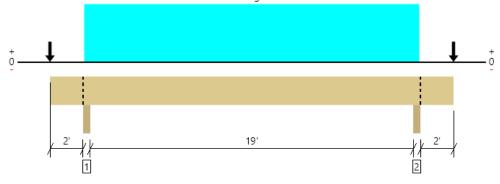
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Travis Michaud
 OCE

 (206) 957-3917
 tmichaud@quantumce.com




7/29/2022 2:54:01 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.2.2 File Name: 22252.01 - 42255 Intrachat Page 58 / 75





# Roof, RB2: Sub-Facia Cantilever 1 piece(s) 1 3/4" x 11 7/8" 1.55E TimberStrand® LSL

#### Overall Length: 23' 7"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

|                       |                    |              |                |      | -                           |
|-----------------------|--------------------|--------------|----------------|------|-----------------------------|
| Design Results        | Actual @ Location  | Allowed      | Result         | LDF  | Load: Combination (Pattern) |
| Member Reaction (lbs) | 1398 @ 2' 1 3/4"   | 5513 (3.50") | Passed (25%)   |      | 1.0 D + 1.0 S (Adj Spans)   |
| Shear (lbs)           | 663 @ 3' 3 3/8"    | 4939         | Passed (13%)   | 1.15 | 1.0 D + 1.0 S (Adj Spans)   |
| Moment (Ft-lbs)       | 2558 @ 11' 9 1/2"  | 9173         | Passed (28%)   | 1.15 | 1.0 D + 1.0 S (Alt Spans)   |
| Live Load Defl. (in)  | 0.300 @ 11' 9 1/2" | 0.643        | Passed (L/772) |      | 1.0 D + 1.0 S (Alt Spans)   |
| Total Load Defl. (in) | 0.444 @ 11' 9 1/2" | 0.965        | Passed (L/521) |      | 1.0 D + 1.0 S (Alt Spans)   |

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

|                                                                                                                                        | Bearing Length |           |          | Loads | to Supports |          |             |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|----------|-------|-------------|----------|-------------|
| Supports                                                                                                                               | Total          | Available | Required | Dead  | Snow        | Factored | Accessories |
| 1 - Beam - LSL                                                                                                                         | 3.50"          | 3.50"     | 1.50"    | 562   | 836         | 1398     | Blocking    |
| 2 - Beam - LSL                                                                                                                         | 3.50"          | 3.50"     | 1.50"    | 562   | 836         | 1398     | Blocking    |
| • Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. |                |           |          |       |             |          |             |

| Bracing Intervals | Comments   |
|-------------------|------------|
| 14' 6" o/c        |            |
| 23' 7" o/c        |            |
|                   | 14' 6" o/c |

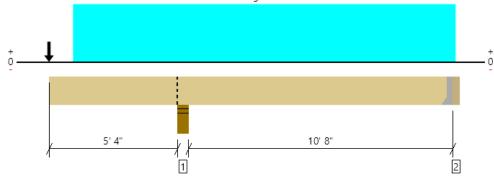
•Maximum allowable bracing intervals based on applied load.

|                       |                      |                 | Dead   | Snow   |              |
|-----------------------|----------------------|-----------------|--------|--------|--------------|
| Vertical Loads        | Location (Side)      | Tributary Width | (0.90) | (1.15) | Comments     |
| 0 - Self Weight (PLF) | 0 to 23' 7"          | N/A             | 6.5    |        |              |
| 1 - Uniform (PSF)     | 2' to 21' 7" (Front) | 1' 6"           | 16.0   | 30.0   | Default Load |
| 2 - Point (Ib)        | 0 (Front)            | N/A             | 250    | 375    | Sub-Fascia   |
| 3 - Point (lb)        | 23' 7" (Front)       | N/A             | 250    | 375    | Sub-Fascia   |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

| ForteWEB Software Operator | Job Notes |
|----------------------------|-----------|
| Travis Michaud<br>QCE      |           |
| (206) 957-3917             |           |
| tmichaud@quantumce.com     |           |






# Roof, RB3: Cantilever Beam

#### 1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL

#### Overall Length: 16' 9"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location  | Allowed       | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|--------------------|---------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 7650 @ 5' 6 3/4"   | 12272 (5.50") | Passed (62%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 3328 @ 6' 9 3/8"   | 13861         | Passed (24%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | -13105 @ 5' 6 3/4" | 34332         | Passed (38%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.209 @ 0          | 0.371         | Passed (2L/638) |      | 1.0 D + 1.0 S (Alt Spans)   |
| Total Load Defl. (in) | 0.320 @ 0          | 0.556         | Passed (2L/418) |      | 1.0 D + 1.0 S (Alt Spans)   |

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

|                                | Bearing Length |                     |          | Loads to Supports (lbs) |      |          |             |
|--------------------------------|----------------|---------------------|----------|-------------------------|------|----------|-------------|
| Supports                       | Total          | Available           | Required | Dead                    | Snow | Factored | Accessories |
| 1 - Stud wall - SPF            | 5.50"          | 5.50"               | 3.43"    | 2933                    | 4717 | 7650     | Blocking    |
| 2 - Hanger on 11 7/8" LSL beam | 3.50"          | Hanger <sup>1</sup> | 1.50"    | 567                     | 1392 | 1959     | See note 1  |

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing  | Bracing Intervals | Comments |  |  |  |  |
|------------------|-------------------|----------|--|--|--|--|
| Top Edge (Lu)    | 16' 6" o/c        |          |  |  |  |  |
| Bottom Edge (Lu) | 16' 6" o/c        |          |  |  |  |  |
|                  |                   |          |  |  |  |  |

•Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-Tie |       |             |               |                |                  |             |  |  |
|-------------------------------|-------|-------------|---------------|----------------|------------------|-------------|--|--|
| Support                       | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |  |  |
| 2 - Face Mount Hanger         | U610  | 2.00"       | N/A           | 14-10d         | 6-10d            |             |  |  |
|                               |       |             |               |                |                  |             |  |  |

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                       |                      |                 | Dead   | Snow   |                                                            |
|-----------------------|----------------------|-----------------|--------|--------|------------------------------------------------------------|
| Vertical Loads        | Location (Side)      | Tributary Width | (0.90) | (1.15) | Comments                                                   |
| 0 - Self Weight (PLF) | 0 to 16' 5 1/2"      | N/A             | 19.5   |        |                                                            |
| 1 - Uniform (PSF)     | 1' to 16' 7" (Front) | 10' 6"          | 16.0   | 30.0   | Default Load                                               |
| 2 - Point (lb)        | 0 (Front)            | N/A             | 562    | 836    | Linked from: RB2:<br>Sub-Facia<br>Cantilever, Support<br>2 |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

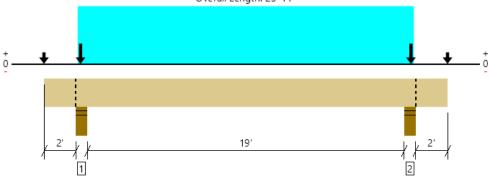
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Travis Michaud
 OCE

 (206) 957-3917
 tmichaud@quantumce.com




7/29/2022 2:54:01 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.2.2 File Name: 22252.01 - 42255 Intrachat Page 60 / 75





#### 1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL

#### Overall Length: 23' 11"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location   | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|---------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 3677 @ 2' 2 3/4"    | 8181 (5.50") | Passed (45%)    |      | 1.0 D + 1.0 S (Adj Spans)   |
| Shear (lbs)           | 915 @ 3' 5 3/8"     | 9878         | Passed (9%)     | 1.15 | 1.0 D + 1.0 S (Adj Spans)   |
| Moment (Ft-lbs)       | 3960 @ 11' 11 1/2"  | 18346        | Passed (22%)    | 1.15 | 1.0 D + 1.0 S (Alt Spans)   |
| Live Load Defl. (in)  | 0.221 @ 11' 11 1/2" | 0.649        | Passed (L/999+) |      | 1.0 D + 1.0 S (Alt Spans)   |
| Total Load Defl. (in) | 0.356 @ 11' 11 1/2" | 0.973        | Passed (L/656)  |      | 1.0 D + 1.0 S (Alt Spans)   |

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

|                                                                                                                                      | Bearing Length |           |          | Loads | to Supports |          |             |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|----------|-------|-------------|----------|-------------|
| Supports                                                                                                                             | Total          | Available | Required | Dead  | Snow        | Factored | Accessories |
| 1 - Stud wall - SPF                                                                                                                  | 5.50"          | 5.50"     | 2.47"    | 1291  | 2386        | 3677     | Blocking    |
| 2 - Stud wall - SPF                                                                                                                  | 5.50"          | 5.50"     | 2.47"    | 1291  | 2386        | 3677     | Blocking    |
| Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. |                |           |          |       |             |          |             |

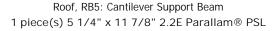
| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 23' 11" o/c       |          |
| Bottom Edge (Lu) | 23' 11" o/c       |          |

•Maximum allowable bracing intervals based on applied load.

|                       |                       |                 | Dead   | Snow   |                                                    |
|-----------------------|-----------------------|-----------------|--------|--------|----------------------------------------------------|
| Vertical Loads        | Location (Side)       | Tributary Width | (0.90) | (1.15) | Comments                                           |
| 0 - Self Weight (PLF) | 0 to 23' 11"          | N/A             | 13.0   |        |                                                    |
| 1 - Uniform (PSF)     | 2' to 21' 11" (Front) | 2'              | 16.0   | 30.0   | Default Load                                       |
| 2 - Point (Ib)        | 0 (Front)             | N/A             | 250    | 375    | Sub-Fascia                                         |
| 3 - Point (Ib)        | 23' 11" (Front)       | N/A             | 250    | 375    | Sub-Fascia                                         |
| 4 - Point (lb)        | 2' 2" (Front)         | N/A             | 567    | 1392   | Linked from: RB3:<br>Cantilever Beam,<br>Support 2 |
| 5 - Point (lb)        | 21' 9" (Front)        | N/A             | 567    | 1392   | Linked from: RB3:<br>Cantilever Beam,<br>Support 2 |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes
Travis Michaud
OCE
(206) 957-3917
tmichaud@quantumce.com



7/29/2022 2:54:01 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.2.2 File Name: 22252.01 - 42255 Intrachat Page 61 / 75







All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location  | Allowed       | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|--------------------|---------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 9283 @ 15' 9 1/4"  | 18047 (5.50") | Passed (51%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 7670 @ 16' 11 7/8" | 13861         | Passed (55%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | -9512 @ 15' 9 1/4" | 34332         | Passed (28%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.052 @ 17' 2"     | 0.200         | Passed (2L/646) |      | 1.0 D + 1.0 S (Alt Spans)   |
| Total Load Defl. (in) | 0.077 @ 17' 2"     | 0.200         | Passed (2L/436) |      | 1.0 D + 1.0 S (Alt Spans)   |

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (0.2") and TL (0.2").

• Allowed moment does not reflect the adjustment for the beam stability factor.

|                                | Bearing Length |                     |          | Loads | to Supports |          |             |
|--------------------------------|----------------|---------------------|----------|-------|-------------|----------|-------------|
| Supports                       | Total          | Available           | Required | Dead  | Snow        | Factored | Accessories |
| 1 - Hanger on 11 7/8" LSL beam | 3.50"          | Hanger <sup>1</sup> | 1.50"    | 172   | 293/-129    | 464      | See note 1  |
| 2 - Stud wall - LSL            | 5.50"          | 5.50"               | 2.83"    | 3639  | 5643        | 9283     | Blocking    |

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing                    | Bracing Intervals | Comments |
|------------------------------------|-------------------|----------|
| Top Edge (Lu)                      | 16' 11" o/c       |          |
| Bottom Edge (Lu)                   | 16' 11" o/c       |          |
| Maximum allassable hus des listers |                   |          |

•Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-7               | Гie   |             |               |                |                  |             |
|-------------------------------------------|-------|-------------|---------------|----------------|------------------|-------------|
| Support                                   | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
| 1 - Face Mount Hanger                     | U610  | 2.00"       | N/A           | 14-10dx1.5     | 6-10d            |             |
| Defende werde de stand weter and instanti |       | - f - II    |               |                |                  |             |

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                       |                     |                 | Dead   | Snow   |                                                    |
|-----------------------|---------------------|-----------------|--------|--------|----------------------------------------------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.15) | Comments                                           |
| 0 - Self Weight (PLF) | 3 1/2" to 17' 2"    | N/A             | 19.5   |        |                                                    |
| 1 - Uniform (PSF)     | 0 to 17' 2" (Front) | 2'              | 16.0   | 30.0   | Default Load                                       |
| 2 - Point (Ib)        | 17' (Front)         | N/A             | 2933   | 4717   | Linked from: RB3:<br>Cantilever Beam,<br>Support 1 |

#### Weyerhaeuser Notes

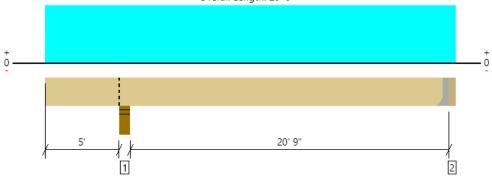
Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Travis Michaud
 QCE

 (206) 957-3917
 tmichaud@quantumce.com




7/29/2022 2:54:01 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.2.2 File Name: 22252.01 - 42255 Intrachat Page 62 / 75



# Roof, RB6: Clear Story 1 piece(s) 5 1/8" x 13 1/2" 24F-V8 DF Glulam

#### Overall Length: 26' 6"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location    | Allowed      | Result         | LDF  | Load: Combination (Pattern) |
|-----------------------|----------------------|--------------|----------------|------|-----------------------------|
| Member Reaction (lbs) | 2631 @ 26' 2 1/2"    | 4997 (1.50") | Passed (53%)   |      | 1.0 D + 1.0 S (Alt Spans)   |
| Shear (lbs)           | 2566 @ 6' 7"         | 14057        | Passed (18%)   | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Pos Moment (Ft-Ibs)   | 13204 @ 16' 2 1/16"  | 35545        | Passed (37%)   | 1.15 | 1.0 D + 1.0 S (Alt Spans)   |
| Neg Moment (Ft-Ibs)   | -3584 @ 5' 2 3/4"    | 35805        | Passed (10%)   | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.341 @ 15' 10"      | 0.699        | Passed (L/738) |      | 1.0 D + 1.0 S (Alt Spans)   |
| Total Load Defl. (in) | 0.542 @ 15' 10 9/16" | 1.049        | Passed (L/465) |      | 1.0 D + 1.0 S (Alt Spans)   |

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 0.99 that was calculated using length L = 20'  $7/8^{\circ}$ .

• Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 6' 6 3/8''.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• Applicable calculations are based on NDS.

|                                | Bearing Length |                     |          | Loads | to Supports |          |             |
|--------------------------------|----------------|---------------------|----------|-------|-------------|----------|-------------|
| Supports                       | Total          | Available           | Required | Dead  | Snow        | Factored | Accessories |
| 1 - Stud wall - SPF            | 5.50"          | 5.50"               | 1.97"    | 1672  | 2619        | 4292     | Blocking    |
| 2 - Hanger on 13 1/2" GLB beam | 3.50"          | Hanger <sup>1</sup> | 1.50"    | 1030  | 1673        | 2703     | See note 1  |

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

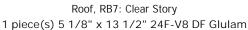
| Lateral Bracing                 | Bracing Intervals         | Comments |
|---------------------------------|---------------------------|----------|
| Top Edge (Lu)                   | 26' 3" o/c                |          |
| Bottom Edge (Lu)                | 26' 3" o/c                |          |
| Maximum allowable bracing inten | als based on applied lead |          |

Maximum allowable bracing intervals based on applied load

# Connector: Simpson Strong-Tie Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 2 - Face Mount Hanger HU5.125/12 2.50" N/A 22-10d 8-10d

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                       |                     |                 | Dead   | Snow   |              |
|-----------------------|---------------------|-----------------|--------|--------|--------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.15) | Comments     |
| 0 - Self Weight (PLF) | 0 to 26' 2 1/2"     | N/A             | 16.8   |        |              |
| 1 - Uniform (PSF)     | 0 to 26' 6" (Front) | 5' 4"           | 16.0   | 30.0   | Default Load |


 ForteWEB Software Operator
 Job Notes

 Travis Michaud
 OCE

 (206) 957-3917
 tmichaud@quantumce.com







Overall Length: 26' 6"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location    | Allowed      | Result         | LDF  | Load: Combination (Pattern) |
|-----------------------|----------------------|--------------|----------------|------|-----------------------------|
| Member Reaction (lbs) | 2524 @ 26' 2 1/2"    | 4997 (1.50") | Passed (51%)   |      | 1.0 D + 1.0 S (Alt Spans)   |
| Shear (lbs)           | 2725 @ 6' 7"         | 14057        | Passed (19%)   | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Pos Moment (Ft-Ibs)   | 12147 @ 16' 7"       | 35694        | Passed (34%)   | 1.15 | 1.0 D + 1.0 S (Alt Spans)   |
| Neg Moment (Ft-Ibs)   | -6932 @ 5' 2 3/4"    | 35805        | Passed (19%)   | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.314 @ 15' 11 9/16" | 0.699        | Passed (L/802) |      | 1.0 D + 1.0 S (Alt Spans)   |
| Total Load Defl. (in) | 0.485 @ 16' 11/16"   | 1.049        | Passed (L/519) |      | 1.0 D + 1.0 S (Alt Spans)   |

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240). • Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 19' 3 1/16".

• Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 7' 9".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• Applicable calculations are based on NDS.

|                                | Bearing Length |                     |          | Loads | to Supports |          |             |
|--------------------------------|----------------|---------------------|----------|-------|-------------|----------|-------------|
| Supports                       | Total          | Available           | Required | Dead  | Snow        | Factored | Accessories |
| 1 - Stud wall - SPF            | 5.50"          | 5.50"               | 2.61"    | 2154  | 3523        | 5678     | Blocking    |
| 2 - Hanger on 13 1/2" GLB beam | 3.50"          | Hanger <sup>1</sup> | 1.50"    | 974   | 1621        | 2595     | See note 1  |

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing                 | Bracing Intervals         | Comments |
|---------------------------------|---------------------------|----------|
| Top Edge (Lu)                   | 26' 3" o/c                |          |
| Bottom Edge (Lu)                | 26' 3" o/c                |          |
| Maximum allowable bracing inten | als based on applied lead |          |

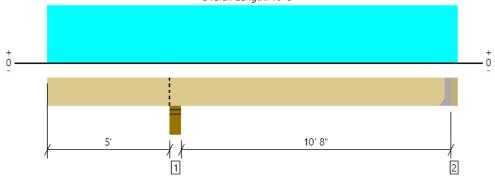
ximum allowable bracing intervals based on applied load

# Connector: Simpson Strong-Tie

| Support         Model         Seat Length         Top Fasteners         Face Fasteners         Member Fasteners         Accessories           2 - Face Mount Hanger         HU5 125/12         2.50"         N/A         22-10dv1.5         8-10d |                       |            |             |               |                |                  |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|-------------|---------------|----------------|------------------|-------------|
| 2 - Face Mount Hanger HUI5 125/12 2 50" N/A 22-10dv1 5 8-10d                                                                                                                                                                                      | Support               | Model      | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
|                                                                                                                                                                                                                                                   | 2 - Face Mount Hanger | HU5.125/12 | 2.50"       | N/A           | 22-10dx1.5     | 8-10d            |             |

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                       |                      |                 | Dead   | Snow   |              |
|-----------------------|----------------------|-----------------|--------|--------|--------------|
| Vertical Loads        | Location (Side)      | Tributary Width | (0.90) | (1.15) | Comments     |
| 0 - Self Weight (PLF) | 0 to 26' 2 1/2"      | N/A             | 16.8   |        |              |
| 1 - Uniform (PSF)     | 5' to 26' 6" (Front) | 5' 4"           | 16.0   | 30.0   | Default Load |
| 2 - Uniform (PSF)     | 0 to 5' (Front)      | 10' 8"          | 16.0   | 30.0   | Default Load |


ForteWEB Software Operator Job Notes Travis Michaud QCE (206) 957-3917 tmichaud@quantumce.com





# Roof, RB8: Clear Story Short 1 piece(s) 5 1/8" x 9" 24F-V8 DF Glulam

#### Overall Length: 16' 5"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed       | Result           | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|---------------|------------------|------|-----------------------------|
| Member Reaction (lbs) | 3061 @ 5' 2 3/4"  | 11980 (5.50") | Passed (26%)     |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 1468 @ 6' 2 1/2"  | 9371          | Passed (16%)     | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Pos Moment (Ft-Ibs)   | 2696 @ 11' 6 1/2" | 15913         | Passed (17%)     | 1.15 | 1.0 D + 1.0 S (Alt Spans)   |
| Neg Moment (Ft-Ibs)   | -3507 @ 5' 2 3/4" | 15913         | Passed (22%)     | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.105 @ 0         | 0.349         | Passed (2L/999+) |      | 1.0 D + 1.0 S (Alt Spans)   |
| Total Load Defl. (in) | 0.126 @ 0         | 0.523         | Passed (2L/996)  |      | 1.0 D + 1.0 S (Alt Spans)   |

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 9' 2".

• Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 7' 8 7/8".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• Applicable calculations are based on NDS.

|                                                                  | Bearing Length                                                                                                                       |                     | Loads to Supports (lbs) |      |      |          |             |  |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|------|------|----------|-------------|--|
| Supports                                                         | Total                                                                                                                                | Available           | Required                | Dead | Snow | Factored | Accessories |  |
| 1 - Stud wall - SPF                                              | 5.50"                                                                                                                                | 5.50"               | 1.50"                   | 1152 | 1909 | 3061     | Blocking    |  |
| 2 - Hanger on 9" GLB beam                                        | 3.50"                                                                                                                                | Hanger <sup>1</sup> | 1.50"                   | 430  | 818  | 1248     | See note 1  |  |
| <ul> <li>Blocking Panels are assumed to carry no load</li> </ul> | Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. |                     |                         |      |      |          |             |  |

At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 16' 2" o/c        |          |
| Bottom Edge (Lu) | 16' 2" o/c        |          |

•Maximum allowable bracing intervals based on applied load.

# Connector: Simpson Strong-Tie Support Model Seat Length Top Fasteners

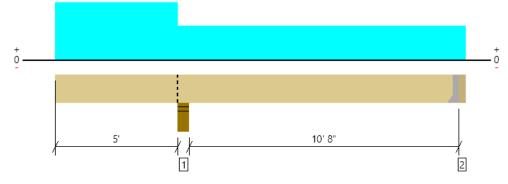
| Support               | Model  | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |  |  |
|-----------------------|--------|-------------|---------------|----------------|------------------|-------------|--|--|
| 2 - Face Mount Hanger | HU38-2 | 2.50"       | N/A           | 14-10dx1.5     | 6-10d            |             |  |  |
|                       |        |             |               |                |                  |             |  |  |

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                       |                     |                 | Dead   | Snow   |              |
|-----------------------|---------------------|-----------------|--------|--------|--------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.15) | Comments     |
| 0 - Self Weight (PLF) | 0 to 16' 1 1/2"     | N/A             | 11.2   |        |              |
| 1 - Uniform (PSF)     | 0 to 16' 5" (Front) | 5' 4"           | 16.0   | 30.0   | Default Load |

 ForteWEB Software Operator
 Job Notes

 Travis Michaud
 OCE


 (206) 957-3917
 tmichaud@quantumce.com





# Roof, RB9: Clear Story Short 1 piece(s) 5 1/8" x 9" 24F-V8 DF Glulam

#### Overall Length: 16' 5"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed       | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|---------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 4116 @ 5' 2 3/4"  | 11980 (5.50") | Passed (34%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 1807 @ 4' 3"      | 9371          | Passed (19%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Pos Moment (Ft-Ibs)   | 2083 @ 12' 1 1/8" | 15913         | Passed (13%)    | 1.15 | 1.0 D + 1.0 S (Alt Spans)   |
| Neg Moment (Ft-Ibs)   | -5809 @ 5' 2 3/4" | 15913         | Passed (37%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.224 @ 0         | 0.349         | Passed (2L/560) |      | 1.0 D + 1.0 S (Alt Spans)   |
| Total Load Defl. (in) | 0.309 @ 0         | 0.523         | Passed (2L/406) |      | 1.0 D + 1.0 S (Alt Spans)   |

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

Deflection criteria: LL (L/360) and TL (L/240).

Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 1.00 that was calculated using length L = 8' 11/16".

• Critical negative moment adjusted by a volume factor of 1.00 that was calculated using length L = 9' 4 5/8".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

Applicable calculations are based on NDS.

|                           | Bearing Length |                     | Loads to Supports (lbs) |      |      |          |             |
|---------------------------|----------------|---------------------|-------------------------|------|------|----------|-------------|
| Supports                  | Total          | Available           | Required                | Dead | Snow | Factored | Accessories |
| 1 - Stud wall - SPF       | 5.50"          | 5.50"               | 1.89"                   | 1519 | 2597 | 4116     | Blocking    |
| 2 - Hanger on 9" GLB beam | 3.50"          | Hanger <sup>1</sup> | 1.50"                   | 356  | 749  | 1105     | See note 1  |

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• At hanger supports, the rotal bearing dimension is equal to the width of the material that is supporting

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing                                           | Bracing Intervals | Comments |  |  |  |  |
|-----------------------------------------------------------|-------------------|----------|--|--|--|--|
| Top Edge (Lu)                                             | 16' 2" o/c        |          |  |  |  |  |
| Bottom Edge (Lu)                                          | 16' 2" o/c        |          |  |  |  |  |
| Maximum allowable bracing intervals based on applied load |                   |          |  |  |  |  |

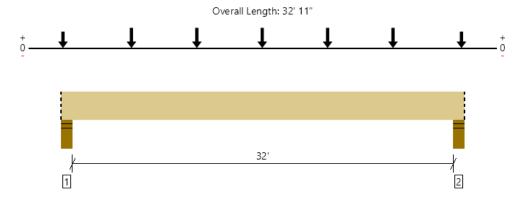
Maximum allowable bracing intervals based on applied load

# Connector: Simpson Strong-Tie

| Support               | Model  | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
|-----------------------|--------|-------------|---------------|----------------|------------------|-------------|
| 2 - Face Mount Hanger | HU38-2 | 2.50"       | N/A           | 10-10dx1.5     | 4-10d            |             |
|                       |        |             |               |                |                  |             |

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                       |                      |                 | Dead   | Snow   |              |
|-----------------------|----------------------|-----------------|--------|--------|--------------|
| Vertical Loads        | Location (Side)      | Tributary Width | (0.90) | (1.15) | Comments     |
| 0 - Self Weight (PLF) | 0 to 16' 1 1/2"      | N/A             | 11.2   |        |              |
| 1 - Uniform (PSF)     | 5' to 16' 5" (Front) | 5' 4"           | 16.0   | 30.0   | Default Load |
| 2 - Uniform (PSF)     | 0 to 5' (Front)      | 9'              | 16.0   | 30.0   | Default Load |


ForteWEB Software Operator Job Notes
Travis Michaud
OCE
(206) 957-3917
tmichaud@quantumce.com







# Roof, RB10: Clear Story Transfer 1 piece(s) 6 3/4" x 24" 24F-V8 DF Glulam



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location   | Allowed       | Result         | LDF  | Load: Combination (Pattern) |
|-----------------------|---------------------|---------------|----------------|------|-----------------------------|
| Member Reaction (lbs) | 15353 @ 4"          | 15778 (5.50") | Passed (97%)   |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 11580 @ 2' 5 1/2"   | 32913         | Passed (35%)   | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Pos Moment (Ft-Ibs)   | 112093 @ 16' 5"     | 129601        | Passed (86%)   | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.826 @ 16' 5 7/16" | 1.075         | Passed (L/468) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 1.467 @ 16' 5 1/2"  | 1.612         | Passed (L/264) |      | 1.0 D + 1.0 S (All Spans)   |

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume factor of 0.87 that was calculated using length L = 32' 3''.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• Applicable calculations are based on NDS.

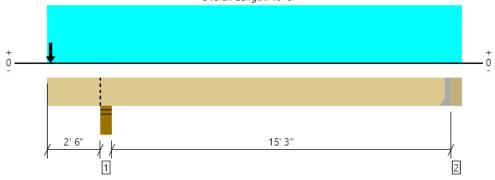
| Available | Required | Dead        | Snow             | Factored              | Accessories |
|-----------|----------|-------------|------------------|-----------------------|-------------|
|           |          |             |                  |                       |             |
| 5.50"     | 5.35"    | 6451        | 8903             | 15353                 | Blocking    |
| 5.50"     | 5.33"    | 6427        | 8869             | 15297                 | Blocking    |
|           | 5.50"    | 5.50" 5.33" | 5.50" 5.33" 6427 | 5.50" 5.33" 6427 8869 |             |

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing  | Bracing Intervals | Comments |  |  |  |  |
|------------------|-------------------|----------|--|--|--|--|
| Top Edge (Lu)    | 31' 1" o/c        |          |  |  |  |  |
| Bottom Edge (Lu) | 32' 11" o/c       |          |  |  |  |  |
|                  |                   |          |  |  |  |  |

•Maximum allowable bracing intervals based on applied load.

|                       |                 |                 | Dead   | Snow   |                                                 |
|-----------------------|-----------------|-----------------|--------|--------|-------------------------------------------------|
| Vertical Loads        | Location (Side) | Tributary Width | (0.90) | (1.15) | Comments                                        |
| 0 - Self Weight (PLF) | 0 to 32' 11"    | N/A             | 39.4   |        |                                                 |
| 1 - Point (Ib)        | 5' 9" (Front)   | N/A             | 1800   | 2600   | GL Beams (Short & Long)                         |
| 2 - Point (Ib)        | 11' 1" (Front)  | N/A             | 1800   | 2600   | GL Beams (Short &<br>Long)                      |
| 3 - Point (lb)        | 16' 5" (Front)  | N/A             | 1800   | 2600   | GL Beams (Short & Long)                         |
| 4 - Point (lb)        | 21' 9" (Front)  | N/A             | 1800   | 2600   | GL Beams (Short &<br>Long)                      |
| 5 - Point (Ib)        | 27' 1" (Front)  | N/A             | 1800   | 2600   | GL Beams (Short & Long)                         |
| 6 - Point (lb)        | 2" (Front)      | N/A             | 1291   | 2386   | Linked from: RB4:<br>Support Beam,<br>Support 1 |
| 7 - Point (Ib)        | 32' 8" (Front)  | N/A             | 1291   | 2386   | Linked from: RB4:<br>Support Beam,<br>Support 2 |


| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>OCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |





# Roof, RB11: Grid I 1 piece(s) 7" x 11 7/8" 2.2E Parallam® PSL

#### Overall Length: 18' 8"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location  | Allowed       | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|--------------------|---------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 10180 @ 2' 8 3/4"  | 16363 (5.50") | Passed (62%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 7828 @ 1' 6 1/8"   | 18481         | Passed (42%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | -20042 @ 2' 8 3/4" | 45776         | Passed (44%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.168 @ 0          | 0.200         | Passed (2L/388) |      | 1.0 D + 1.0 S (Alt Spans)   |
| Total Load Defl. (in) | 0.261 @ 0          | 0.273         | Passed (2L/252) |      | 1.0 D + 1.0 S (Alt Spans)   |

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (0.2") and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

- 572 lbs uplift at support located at 18' 2 1/2". Strapping or other restraint may be required.

• Member should be side-loaded from both sides of the member or braced to prevent rotation.

|                                | Bearing Length |                     |          | Loads to Supports (lbs) |         |          |             |
|--------------------------------|----------------|---------------------|----------|-------------------------|---------|----------|-------------|
| Supports                       | Total          | Available           | Required | Dead                    | Snow    | Factored | Accessories |
| 1 - Stud wall - SPF            | 5.50"          | 5.50"               | 3.42"    | 4039                    | 6140    | 10180    | Blocking    |
| 2 - Hanger on 11 7/8" LSL beam | 5.50"          | Hanger <sup>1</sup> | 1.50"    | -36                     | 94/-536 | 58/-572  | See note 1  |

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• <sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing  | Bracing Intervals | Comments |
|------------------|-------------------|----------|
| Top Edge (Lu)    | 18' 3" o/c        |          |
| Bottom Edge (Lu) | 18' 3" o/c        |          |
|                  |                   |          |

•Maximum allowable bracing intervals based on applied load.

#### Connector: Simpson Strong-Tie

| Support                                                                                        | Model   | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |  |
|------------------------------------------------------------------------------------------------|---------|-------------|---------------|----------------|------------------|-------------|--|
| 2 - Face Mount Hanger                                                                          | HU410-2 | 2.50"       | N/A           | 14-10dx1.5     | 6-10d            |             |  |
| Refer to manufacturer notes and instructions for proper installation and use of all connectors |         |             |               |                |                  |             |  |

Refer to manufacturer notes and instructions for proper installation and use of all connectors

|                       |                     |                 | Dead   | Snow   |                                                    |
|-----------------------|---------------------|-----------------|--------|--------|----------------------------------------------------|
| Vertical Loads        | Location (Side)     | Tributary Width | (0.90) | (1.15) | Comments                                           |
| 0 - Self Weight (PLF) | 0 to 18' 2 1/2"     | N/A             | 26.0   |        |                                                    |
| 1 - Uniform (PSF)     | 0 to 18' 8" (Front) | 2'              | 16.0   | 30.0   | Default Load                                       |
| 2 - Point (Ib)        | 2" (Front)          | N/A             | 2933   | 4717   | Linked from: RB3:<br>Cantilever Beam,<br>Support 1 |

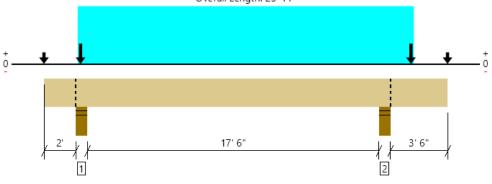
#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator                                        | Job Notes |
|-------------------------------------------------------------------|-----------|
| Travis Michaud<br>QCE<br>(206) 957-3917<br>tmichaud@quantumce.com |           |




7/29/2022 2:54:01 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.2.2 File Name: 22252.01 - 42255 Intrachat Page 73 / 75





#### 1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL

#### Overall Length: 23' 11"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

|                       |                    |              | 1               |      |                             |
|-----------------------|--------------------|--------------|-----------------|------|-----------------------------|
| Design Results        | Actual @ Location  | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
| Member Reaction (lbs) | 3991 @ 20' 2 1/4"  | 8181 (5.50") | Passed (49%)    |      | 1.0 D + 1.0 S (Adj Spans)   |
| Shear (lbs)           | 2664 @ 21' 4 7/8"  | 9878         | Passed (27%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | -5620 @ 20' 2 1/4" | 18346        | Passed (31%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.187 @ 23' 11"    | 0.249        | Passed (2L/478) |      | 1.0 D + 1.0 S (Alt Spans)   |
| Total Load Defl. (in) | 0.232 @ 23' 11"    | 0.373        | Passed (2L/386) |      | 1.0 D + 1.0 S (Alt Spans)   |

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

• Overhang deflection criteria: LL (2L/360) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

|                                                                                                                                      | Bearing Length |           |          | Loads to Supports (lbs) |      |          |             |  |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|----------|-------------------------|------|----------|-------------|--|
| Supports                                                                                                                             | Total          | Available | Required | Dead                    | Snow | Factored | Accessories |  |
| 1 - Stud wall - SPF                                                                                                                  | 5.50"          | 5.50"     | 2.32"    | 1181                    | 2264 | 3445     | Blocking    |  |
| 2 - Stud wall - SPF                                                                                                                  | 5.50"          | 5.50"     | 2.68"    | 1401                    | 2590 | 3991     | Blocking    |  |
| Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed. |                |           |          |                         |      |          |             |  |

| Bracing Intervals | Comments    |
|-------------------|-------------|
| 23' 11" o/c       |             |
| 23' 11" o/c       |             |
|                   | 23' 11" o/c |

•Maximum allowable bracing intervals based on applied load.

|                       |                       |                 | Dead   | Snow   |                                                    |
|-----------------------|-----------------------|-----------------|--------|--------|----------------------------------------------------|
| Vertical Loads        | Location (Side)       | Tributary Width | (0.90) | (1.15) | Comments                                           |
| 0 - Self Weight (PLF) | 0 to 23' 11"          | N/A             | 13.0   |        |                                                    |
| 1 - Uniform (PSF)     | 2' to 21' 11" (Front) | 2'              | 16.0   | 30.0   | Default Load                                       |
| 2 - Point (Ib)        | 0 (Front)             | N/A             | 250    | 375    | Sub-Fascia                                         |
| 3 - Point (Ib)        | 23' 11" (Front)       | N/A             | 250    | 375    | Sub-Fascia                                         |
| 4 - Point (lb)        | 2' 2" (Front)         | N/A             | 567    | 1392   | Linked from: RB3:<br>Cantilever Beam,<br>Support 2 |
| 5 - Point (lb)        | 21' 9" (Front)        | N/A             | 567    | 1392   | Linked from: RB3:<br>Cantilever Beam,<br>Support 2 |

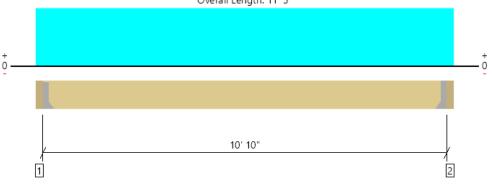
#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes
Travis Michaud
QCE
(206) 957-3917
tmichaud@quantumce.com




7/29/2022 2:54:01 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.2.2 File Name: 22252.01 - 42255 Intrachat Page 74 / 75





# Roof, RB13: Grid 11 Low 3 piece(s) 2 x 8 SPF No.1/No.2

#### Overall Length: 11' 5"



All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results        | Actual @ Location | Allowed      | Result          | LDF  | Load: Combination (Pattern) |
|-----------------------|-------------------|--------------|-----------------|------|-----------------------------|
| Member Reaction (lbs) | 839 @ 3 1/2"      | 2869 (1.50") | Passed (29%)    |      | 1.0 D + 1.0 S (All Spans)   |
| Shear (lbs)           | 746 @ 10 3/4"     | 3377         | Passed (22%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Moment (Ft-lbs)       | 2273 @ 5' 8 1/2"  | 3967         | Passed (57%)    | 1.15 | 1.0 D + 1.0 S (All Spans)   |
| Live Load Defl. (in)  | 0.124 @ 5' 8 1/2" | 0.361        | Passed (L/999+) |      | 1.0 D + 1.0 S (All Spans)   |
| Total Load Defl. (in) | 0.240 @ 5' 8 1/2" | 0.542        | Passed (L/542)  |      | 1.0 D + 1.0 S (All Spans)   |

System : Roof Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/360) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

|                                                                                                                     | Bearing Length |                     |          | Loads | to Supports |          |             |  |  |
|---------------------------------------------------------------------------------------------------------------------|----------------|---------------------|----------|-------|-------------|----------|-------------|--|--|
| Supports                                                                                                            | Total          | Available           | Required | Dead  | Snow        | Factored | Accessories |  |  |
| 1 - Hanger on 7 1/4" LSL beam                                                                                       | 3.50"          | Hanger <sup>1</sup> | 1.50"    | 425   | 457         | 882      | See note 1  |  |  |
| 2 - Hanger on 7 1/4" LSL beam                                                                                       | 3.50"          | Hanger <sup>1</sup> | 1.50"    | 425   | 457         | 882      | See note 1  |  |  |
| At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger |                |                     |          |       |             |          |             |  |  |

<sup>1</sup> See Connector grid below for additional information and/or requirements.

| Lateral Bracing                                           | Bracing Intervals | Comments |  |  |  |  |
|-----------------------------------------------------------|-------------------|----------|--|--|--|--|
| Top Edge (Lu)                                             | 10' 10" o/c       |          |  |  |  |  |
| Bottom Edge (Lu)                                          | 10' 10" o/c       |          |  |  |  |  |
| Maximum allowable bracing intervals based on applied load |                   |          |  |  |  |  |

imum allowable bracing intervals based on applied load

| Connector: Simpson Strong-Tie |         |             |               |                |                  |             |  |  |  |
|-------------------------------|---------|-------------|---------------|----------------|------------------|-------------|--|--|--|
| Support                       | Model   | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |  |  |  |
| 1 - Face Mount Hanger         | LUS28-3 | 2.00"       | N/A           | 6-10dx1.5      | 4-10d            |             |  |  |  |
| 2 - Face Mount Hanger         | LUS28-3 | 2.00"       | N/A           | 6-10dx1.5      | 4-10d            |             |  |  |  |

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

|                       |                      |                 | Dead   | Snow   |              |
|-----------------------|----------------------|-----------------|--------|--------|--------------|
| Vertical Loads        | Location (Side)      | Tributary Width | (0.90) | (1.15) | Comments     |
| 0 - Self Weight (PLF) | 3 1/2" to 11' 1 1/2" | N/A             | 8.3    |        |              |
| 1 - Uniform (PSF)     | 0 to 11' 5" (Front)  | 2' 8"           | 16.0   | 30.0   | Default Load |
| 2 - Uniform (PSF)     | 0 to 11' 5" (Front)  | 2'              | 12.0   | -      | Wall Load    |

#### Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes Travis Michaud QCE (206) 957-3917 tmichaud@quantumce.com



7/29/2022 2:54:01 PM UTC ForteWEB v3.4, Engine: V8.2.2.122, Data: V8.1.2.2 File Name: 22252.01 - 42255 Intrachat Page 75 / 75



Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

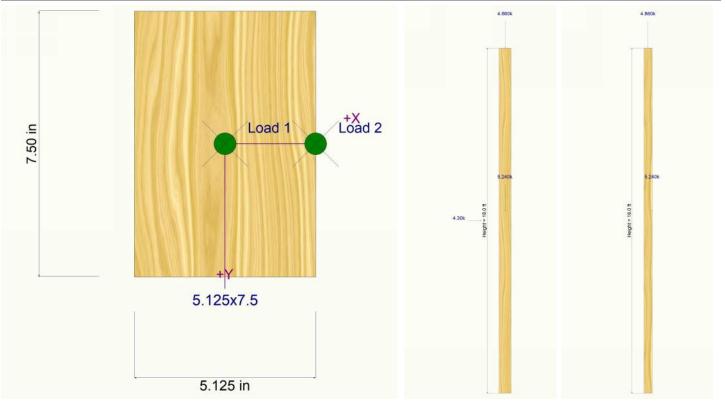
DESCRIPTION: Grid 8 Column

# Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

# General Information

| End Fixities                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                    | e Stress Desi<br>ttom Pinned                                             |                                                                                                                                      |                                                                                                                           | Wood Section Name<br>Wood Grading/Manuf.                                                                                               | 5.125x7<br>Western                                                                                            |                                                                                                          |                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------|
| Overall Column H                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                    |                                                                          | 18 ft                                                                                                                                |                                                                                                                           | Wood Member Type                                                                                                                       | GLB                                                                                                           |                                                                                                          |                        |
|                                                                                                                                                                                                                   | non-slender calc                                                                                                                                                                                                                                                                                   | ulations )                                                               |                                                                                                                                      |                                                                                                                           | Exact Width                                                                                                                            | 5.125 in A                                                                                                    | llow Stress Modification Fac                                                                             | tors                   |
| Wood Species                                                                                                                                                                                                      | GluLam Colu                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                      |                                                                                                                           | Exact Depth                                                                                                                            | 7.50 in                                                                                                       | Cf or Cv for Bending                                                                                     | 1.0                    |
| Wood Grade                                                                                                                                                                                                        | 2.0 L1, >= 4                                                                                                                                                                                                                                                                                       | Lamination                                                               | S                                                                                                                                    |                                                                                                                           | Area                                                                                                                                   | 38.438 in^2                                                                                                   | Cf or Cv for Compression                                                                                 | 1.0                    |
| Fb +                                                                                                                                                                                                              | <b>2,400.0</b> psi                                                                                                                                                                                                                                                                                 | Fv                                                                       | 230.0                                                                                                                                | psi                                                                                                                       | lx                                                                                                                                     | 180.176 in <sup>4</sup>                                                                                       | Cf or Cv for Tension                                                                                     | 1.0                    |
| Fb -                                                                                                                                                                                                              | <b>2,200.0</b> psi                                                                                                                                                                                                                                                                                 | Ft                                                                       | 1,650.0                                                                                                                              | psi                                                                                                                       | ly                                                                                                                                     | 84.132 in <sup>4</sup>                                                                                        | Cm : Wet Use Factor                                                                                      | 1.0                    |
| Fc - Prll                                                                                                                                                                                                         | 2,400.0 psi                                                                                                                                                                                                                                                                                        | Density                                                                  | 1                                                                                                                                    | pcf                                                                                                                       | 'y                                                                                                                                     | 04.132 11 4                                                                                                   | Ct : Temperature Factor                                                                                  | 1.0                    |
| Fc - Perp                                                                                                                                                                                                         | <b>650.0</b> psi                                                                                                                                                                                                                                                                                   |                                                                          |                                                                                                                                      |                                                                                                                           |                                                                                                                                        |                                                                                                               | Cfu : Flat Use Factor                                                                                    | 1.0                    |
| E : Modulus of El                                                                                                                                                                                                 | asticity                                                                                                                                                                                                                                                                                           | x-x Bending                                                              | y-y Bending                                                                                                                          | Axial                                                                                                                     |                                                                                                                                        |                                                                                                               | Kf : Built-up columns                                                                                    | 1.0 NDS 15             |
|                                                                                                                                                                                                                   | Basic                                                                                                                                                                                                                                                                                              | 2,000.0                                                                  | 2,000.0                                                                                                                              | 2,000                                                                                                                     | .0 ksi                                                                                                                                 |                                                                                                               | Use Cr : Repetitive ?                                                                                    | No                     |
|                                                                                                                                                                                                                   | Minimum                                                                                                                                                                                                                                                                                            | 1.060.0                                                                  | 1,060.0                                                                                                                              | _,                                                                                                                        | Brace condition for de                                                                                                                 | floction (buckling                                                                                            |                                                                                                          | NO                     |
|                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    | .,                                                                       | .,                                                                                                                                   |                                                                                                                           | X-X (width) axis                                                                                                                       |                                                                                                               | ngth for buckling ABOUT Y-Y A                                                                            | vic – 0 ft K – 1 0     |
|                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    |                                                                          |                                                                                                                                      |                                                                                                                           | Y-Y (depth) axis                                                                                                                       |                                                                                                               | ength for buckling ABOUT X-X A                                                                           |                        |
|                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                    |                                                                          |                                                                                                                                      |                                                                                                                           |                                                                                                                                        | . Ofibraced Le                                                                                                | right for backling ADOUT X-X P                                                                           | IXIS - 10 II, IX - 1.0 |
| Applied Loads                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                  |                                                                          |                                                                                                                                      |                                                                                                                           | Service load                                                                                                                           | ds entered. Load                                                                                              | Factors will be applied for                                                                              | r calculations.        |
| Transfer B                                                                                                                                                                                                        | eam: Axial Load                                                                                                                                                                                                                                                                                    |                                                                          | 20, S = 3.240<br>cc = 2.563 in, I                                                                                                    |                                                                                                                           | S = 3.240 k                                                                                                                            |                                                                                                               |                                                                                                          |                        |
| Transfer Be<br>BENDING LO<br>Lat. Point L                                                                                                                                                                         | eam: Axial Load<br>ADS<br>Load at 9.0 ft cre                                                                                                                                                                                                                                                       | at 9.50 ft, Xeo                                                          | cc = 2.563 in, I                                                                                                                     |                                                                                                                           | 5 = 3.240 k                                                                                                                            |                                                                                                               |                                                                                                          |                        |
| Transfer Bending LO                                                                                                                                                                                               | eam: Axial Load<br>ADS<br>Load at 9.0 ft cre                                                                                                                                                                                                                                                       | at 9.50 ft, Xeo                                                          | cc = 2.563 in, I                                                                                                                     |                                                                                                                           | 5 = 3.240 k                                                                                                                            |                                                                                                               |                                                                                                          |                        |
| Transfer Be<br>BENDING LO<br>Lat. Point L<br>DESIGN SUMM                                                                                                                                                          | eam: Axial Load<br>ADS<br>Load at 9.0 ft cre                                                                                                                                                                                                                                                       | at 9.50 ft, Xeo<br>ating Mx-x, W                                         | cc = 2.563 in, I                                                                                                                     |                                                                                                                           | S = 3.240 k                                                                                                                            |                                                                                                               |                                                                                                          |                        |
| Transfer Be<br>BENDING LO<br>Lat. Point L<br>DESIGN SUMM<br>Sending & Shea                                                                                                                                        | eam: Axial Load<br>ADS<br>Load at 9.0 ft cre<br>MARY                                                                                                                                                                                                                                               | at 9.50 ft, Xeo<br>ating Mx-x, W                                         | cc = 2.563 in, I<br>/ = 4.30 k                                                                                                       | D = 2.0, S                                                                                                                | S = 3.240 k<br>Maximum SERVICE                                                                                                         | E Lateral Load I                                                                                              | Reactions                                                                                                |                        |
| Transfer Be<br>BENDING LO<br>Lat. Point L<br>DESIGN SUMM<br>ending & Shea<br>PASS Max. Axi<br>Load Co                                                                                                             | eam: Axial Load<br>ADS<br>Load at 9.0 ft cre<br>MARY<br>ar Check Resul<br>al+Bending Stress<br>ombination                                                                                                                                                                                          | at 9.50 ft, Xeo<br>ating Mx-x, W<br>Its<br>Ratio =                       | cc = 2.563 in, I<br>' = 4.30 k<br>0.93<br>+D+0.60                                                                                    | D = 2.0, S<br>76 : 1                                                                                                      | Maximum SERVICE<br>Top along Y-Y                                                                                                       | 2.150 k                                                                                                       | Bottom along Y-Y                                                                                         | 2.150 k                |
| Transfer Be<br>BENDING LO<br>Lat. Point L<br>DESIGN SUMM<br>ending & Shea<br>PASS Max. Axi.<br>Load Co<br>Governi                                                                                                 | eam: Axial Load<br>ADS<br>Load at 9.0 ft cre<br>MARY<br>ar Check Resul<br>al+Bending Stress<br>ombination<br>ing NDS Forumlanp                                                                                                                                                                     | at 9.50 ft, Xed<br>ating Mx-x, W<br>Its<br>Ratio =<br>+ Mxx + Myy        | cc = 2.563 in, I<br>/ = 4.30 k<br>0.93<br>+D+0.60<br>/, NDS Eq. 3.                                                                   | D = 2.0, S<br>76 : 1<br>0W<br>.9-                                                                                         | Maximum SERVICE<br>Top along Y-Y                                                                                                       |                                                                                                               | Bottom along Y-Y                                                                                         | 2.150 k<br>06216 k     |
| Transfer Be<br>BENDING LO<br>Lat. Point L<br>DESIGN SUMM<br>ending & Shea<br>PASS Max. Axi.<br>Load Co<br>Governi<br>Location                                                                                     | eam: Axial Load<br>ADS<br>Load at 9.0 ft cre<br>MARY<br>ar Check Resul<br>al+Bending Stress<br>ombination<br>ing NDS Forumlanp<br>n of max.above base                                                                                                                                              | at 9.50 ft, Xed<br>ating Mx-x, W<br>Its<br>Ratio =<br>+ Mxx + Myy        | cc = 2.563 in, I<br>/ = 4.30 k<br>0.93<br>+D+0.60<br>/, NDS Eq. 3.                                                                   | D = 2.0, S<br>76 : 1                                                                                                      | Maximum SERVICE<br>Top along Y-Y                                                                                                       | 2.150 k<br>).06216 k                                                                                          | Bottom along Y-Y<br>Bottom along X-X 0.                                                                  |                        |
| Transfer Be<br>BENDING LO<br>Lat. Point L<br>DESIGN SUMM<br>ending & Shea<br>PASS Max. Axi<br>Load Co<br>Governi<br>Location<br>At maxi                                                                           | eam: Axial Load<br>ADS<br>Load at 9.0 ft cre<br>MARY<br>ar Check Resul<br>al+Bending Stress<br>ombination<br>ing NDS Forumlanp<br>in of max.above base<br>mum location values                                                                                                                      | at 9.50 ft, Xed<br>ating Mx-x, W<br>Its<br>Ratio =<br>+ Mxx + Myy        | 0.93<br>+D+0.60<br>, NDS Eq. 3.<br>9.00                                                                                              | D = 2.0, S<br>76 : 1<br>DW<br>.9-<br>60 ft                                                                                | Maximum SERVICE<br>Top along Y-Y<br>Top along X-X (                                                                                    | 2.150 k<br>).06216 k                                                                                          | Bottom along Y-Y<br>Bottom along X-X 0.                                                                  | 06216 k                |
| Transfer Be<br>BENDING LO<br>Lat. Point L<br>DESIGN SUMM<br>Bending & Shea<br>PASS Max. Axi.<br>Load Co<br>Governi<br>Location<br>At maxii<br>Appl                                                                | eam: Axial Load<br>ADS<br>Load at 9.0 ft cre<br>MARY<br>ar Check Resul<br>al+Bending Stress<br>ombination<br>ing NDS Forumlanp<br>in of max.above base<br>mum location values<br>lied Axial                                                                                                        | at 9.50 ft, Xed<br>ating Mx-x, W<br>Its<br>Ratio =<br>+ Mxx + Myy        | cc = 2.563 in, I<br>/ = 4.30 k<br>0.93<br>+D+0.60<br>/, NDS Eq. 3.<br>9.00<br>3.60                                                   | D = 2.0, S<br><b>76</b> : 1<br>DW<br>.9-<br>60 ft<br>20 k                                                                 | Maximum SERVICE<br>Top along Y-Y<br>Top along X-X (<br>Maximum SERVICE Loa<br>Along Y-Y                                                | 2.150 k<br>0.06216 k<br>ad Lateral Deflection                                                                 | Bottom along Y-Y<br>Bottom along X-X 0.                                                                  | 06216 k                |
| Transfer Be<br>BENDING LO<br>Lat. Point L<br>DESIGN SUMM<br>eending & Shea<br>PASS Max. Axi.<br>Load Co<br>Governi<br>Location<br>At maxii<br>Appi<br>Appi                                                        | eam: Axial Load<br>ADS<br>Load at 9.0 ft cre<br>MARY<br>ar Check Resul<br>al+Bending Stress<br>ombination<br>ing NDS Forumlanp<br>in of max.above base<br>mum location values<br>lied Axial<br>lied Mx                                                                                             | at 9.50 ft, Xed<br>ating Mx-x, W<br>Its<br>Ratio =<br>+ Mxx + Myy        | cc = 2.563 in, I<br>/ = 4.30 k<br>0.93<br>+D+0.60<br>/, NDS Eq. 3.<br>9.0<br>3.60<br>11.5                                            | D = 2.0, S<br><b>76</b> : 1<br>DW<br>.9-<br>60 ft<br>20 k<br>32 k-ft                                                      | Maximum SERVICE<br>Top along Y-Y<br>Top along X-X (<br>Maximum SERVICE Loa<br>Along Y-Y                                                | 2.150 k<br>0.06216 k<br>ad Lateral Deflection<br>1.063 in at                                                  | Bottom along Y-Y<br>Bottom along X-X 0.                                                                  | 06216 k                |
| Transfer Be<br>BENDING LO<br>Lat. Point I<br>DESIGN SUMM<br>ending & Shea<br>PASS Max. Axi.<br>Load Co<br>Governi<br>Location<br>At maxii<br>Appi<br>Appi                                                         | eam: Axial Load<br>ADS<br>Load at 9.0 ft cre<br>MARY<br>ar Check Resul<br>al+Bending Stress<br>ombination<br>ing NDS Forumlanp<br>n of max.above base<br>mum location values<br>lied Axial<br>lied Mx<br>lied My                                                                                   | at 9.50 ft, Xed<br>ating Mx-x, W<br>Its<br>Ratio =<br>+ Mxx + Myy        | cc = 2.563 in, I<br>= 4.30 k<br><b>0.93</b><br>+D+0.60<br>y, NDS Eq. 3.<br>9.00<br>3.60<br>11.55<br>-0.21                            | D = 2.0, S<br><b>76</b> : 1<br>DW<br>.9-<br>60 ft<br>20 k<br>32 k-ft<br>50 k-ft                                           | Maximum SERVICE<br>Top along Y-Y<br>Top along X-X<br>Maximum SERVICE Loa<br>Along Y-Y<br>for load combi                                | 2.150 k<br>0.06216 k<br>ad Lateral Deflection<br>1.063 in at<br>nation : +0.420W<br>0.0 in at                 | Bottom along Y-Y<br>Bottom along X-X 0.<br>ons<br>9.060 ft above base                                    | 06216 k                |
| Transfer Be<br>BENDING LO<br>Lat. Point I<br>DESIGN SUMM<br>ending & Shea<br>PASS Max. Axi.<br>Load Co<br>Governi<br>Location<br>At maxii<br>Appi<br>Appi                                                         | eam: Axial Load<br>ADS<br>Load at 9.0 ft cre<br>MARY<br>ar Check Resul<br>al+Bending Stress<br>ombination<br>ing NDS Forumlanp<br>in of max.above base<br>mum location values<br>lied Axial<br>lied Mx                                                                                             | at 9.50 ft, Xed<br>ating Mx-x, W<br>Its<br>Ratio =<br>+ Mxx + Myy        | cc = 2.563 in, I<br>/ = 4.30 k<br>0.93<br>+D+0.60<br>/, NDS Eq. 3.<br>9.0<br>3.60<br>11.5                                            | D = 2.0, S<br><b>76</b> : 1<br>DW<br>.9-<br>60 ft<br>20 k<br>32 k-ft<br>50 k-ft                                           | Maximum SERVICE<br>Top along Y-Y<br>Top along X-X<br>Maximum SERVICE Loa<br>Along Y-Y<br>for load combi<br>Along X-X                   | 2.150 k<br>0.06216 k<br>ad Lateral Deflection<br>1.063 in at<br>nation : +0.420W<br>0.0 in at<br>nation : n/a | Bottom along Y-Y<br>Bottom along X-X 0.<br>ons<br>9.060 ft above base<br>0.0 ft above base               | 06216 k                |
| Transfer Be<br>BENDING LO<br>Lat. Point L<br>DESIGN SUMM<br>eending & Shea<br>PASS Max. Axi.<br>Load Co<br>Governi<br>Location<br>At maxii<br>App<br>App<br>Fc :<br>PASS Maximum                                  | eam: Axial Load<br>ADS<br>Load at 9.0 ft cre<br>MARY<br>ar Check Resul<br>al+Bending Stress<br>ombination<br>ing NDS Forumlanp<br>n of max.above base<br>mum location values<br>lied Axial<br>lied My<br>Allowable<br>n Shear Stress Ra                                                            | at 9.50 ft, Xed<br>ating Mx-x, W<br>Its<br>Ratio =<br>+ Mxx + Myy<br>are | cc = 2.563 in, I<br>= 4.30 k<br>+D+0.60<br>y, NDS Eq. 3.<br>9.0<br>3.60<br>11.5<br>-0.211<br>1,014.<br>0.13                          | D = 2.0, S<br>76 : 1<br>DW<br>.9-<br>60 ft<br>20 k<br>32 k-ft<br>50 k-ft<br>10 psi<br>68 : 1                              | Maximum SERVICE<br>Top along Y-Y<br>Top along X-X<br>Maximum SERVICE Loa<br>Along Y-Y<br>for load combi<br>Along X-X<br>for load combi | 2.150 k<br>0.06216 k<br>ad Lateral Deflection<br>1.063 in at<br>nation : +0.420W<br>0.0 in at<br>nation : n/a | Bottom along Y-Y<br>Bottom along X-X 0.<br>ons<br>9.060 ft above base<br>0.0 ft above base               | 06216 k                |
| Transfer Be<br>BENDING LO<br>Lat. Point L<br>DESIGN SUMM<br>ending & Shea<br>PASS Max. Axi.<br>Load Co<br>Governi<br>Location<br>At maxi.<br>App<br>App<br>Fc :<br>PASS Maximum<br>Load Co                        | eam: Axial Load<br>ADS<br>Load at 9.0 ft cre<br>MARY<br>ar Check Resul<br>al+Bending Stress<br>ombination<br>ing NDS Forumlanp<br>n of max.above base<br>mum location values<br>lied Axial<br>lied My<br>Allowable<br>n Shear Stress Ra<br>ombination                                              | at 9.50 ft, Xed<br>ating Mx-x, W<br>Its<br>Ratio =<br>+ Mxx + Myy<br>are | cc = 2.563 in, I<br>= 4.30 k<br>+D+0.6(<br>y, NDS Eq. 3.<br>9.0)<br>3.66<br>11.5<br>-0.21:<br>1,014.<br>0.13<br>+D+0.6(              | D = 2.0, S<br><b>76</b> : 1<br>DW<br>.9-<br>60 ft<br>20 k<br>32 k-ft<br>50 k-ft<br>10 psi<br><b>68</b> : 1<br>DW          | Maximum SERVICE<br>Top along Y-Y<br>Top along X-X<br>Maximum SERVICE Loa<br>Along Y-Y<br>for load combi<br>Along X-X<br>for load combi | 2.150 k<br>0.06216 k<br>ad Lateral Deflection<br>1.063 in at<br>nation : +0.420W<br>0.0 in at<br>nation : n/a | Bottom along Y-Y<br>Bottom along X-X 0.<br>ons<br>9.060 ft above base<br>0.0 ft above base<br>e stresses | 06216 k                |
| Transfer Be<br>BENDING LO<br>Lat. Point L<br>DESIGN SUMM<br>ending & Shea<br>PASS Max. Axi.<br>Load Co<br>Governi<br>Location<br>At maxii<br>App<br>App<br>Fc :<br>PASS Maximum<br>Load Co<br>Location            | eam: Axial Load<br>ADS<br>Load at 9.0 ft cre<br><i>MARY</i><br>ar Check Resul<br>al+Bending Stress<br>ombination<br>ing NDS Forumlap<br>n of max.above base<br>mum location values<br>lied Axial<br>lied Mx<br>lied My<br>Allowable<br>n Shear Stress Ra<br>ombination<br>n of max.above base      | at 9.50 ft, Xed<br>ating Mx-x, W<br>Its<br>Ratio =<br>+ Mxx + Myy<br>are | cc = 2.563 in, I<br>= 4.30 k<br>+D+0.60<br>y, NDS Eq. 3.<br>9.0<br>3.66<br>11.5<br>-0.21<br>1,014.<br>0.13<br>+D+0.60<br>8.9         | D = 2.0, S<br><b>76</b> : 1<br>DW<br>.9-<br>60 ft<br>20 k<br>32 k-ft<br>50 k-ft<br>10 psi<br><b>68</b> : 1<br>DW<br>40 ft | Maximum SERVICE<br>Top along Y-Y<br>Top along X-X<br>Maximum SERVICE Loa<br>Along Y-Y<br>for load combi<br>Along X-X<br>for load combi | 2.150 k<br>0.06216 k<br>ad Lateral Deflection<br>1.063 in at<br>nation : +0.420W<br>0.0 in at<br>nation : n/a | Bottom along Y-Y<br>Bottom along X-X 0.<br>ons<br>9.060 ft above base<br>0.0 ft above base<br>e stresses | 06216 k                |
| Transfer Be<br>BENDING LO<br>Lat. Point L<br>DESIGN SUMM<br>ending & Shea<br>PASS Max. Axi.<br>Load Co<br>Governi<br>Location<br>At maxii<br>App<br>App<br>Fc :<br>PASS Maximum<br>Load Co<br>Location<br>Applied | eam: Axial Load<br>ADS<br>Load at 9.0 ft cre<br><i>MARY</i><br>ar Check Resul<br>al+Bending Stress<br>ombination<br>ing NDS Forumlap<br>n of max.above base<br>mum location values<br>lied Axial<br>lied Mx<br>Allowable<br>n Shear Stress Ra<br>ombination<br>n of max.above base<br>Design Shear | at 9.50 ft, Xed<br>ating Mx-x, W<br>Its<br>Ratio =<br>+ Mxx + Myy<br>are | cc = 2.563 in, I<br>= 4.30 k<br>+D+0.60<br>y, NDS Eq. 3.<br>9.0<br>3.66<br>11.5<br>-0.21<br>1,014.<br>0.13<br>+D+0.60<br>8.9<br>50.3 | D = 2.0, S<br>76 : 1<br>DW<br>.9-<br>60 ft<br>20 k<br>32 k-ft<br>50 k-ft<br>10 psi<br>68 : 1<br>DW<br>40 ft<br>41 psi     | Maximum SERVICE<br>Top along Y-Y<br>Top along X-X<br>Maximum SERVICE Loa<br>Along Y-Y<br>for load combi<br>Along X-X<br>for load combi | 2.150 k<br>0.06216 k<br>ad Lateral Deflection<br>1.063 in at<br>nation : +0.420W<br>0.0 in at<br>nation : n/a | Bottom along Y-Y<br>Bottom along X-X 0.<br>ons<br>9.060 ft above base<br>0.0 ft above base<br>e stresses | 06216 k                |
| Transfer Be<br>BENDING LO<br>Lat. Point L<br>DESIGN SUMM<br>ending & Shea<br>PASS Max. Axi.<br>Load Co<br>Governi<br>Location<br>At maxii<br>App<br>App<br>Fc :<br>PASS Maximum<br>Load Co<br>Location<br>Applied | eam: Axial Load<br>ADS<br>Load at 9.0 ft cre<br><i>MARY</i><br>ar Check Resul<br>al+Bending Stress<br>ombination<br>ing NDS Forumlap<br>n of max.above base<br>mum location values<br>lied Axial<br>lied Mx<br>lied My<br>Allowable<br>n Shear Stress Ra<br>ombination<br>n of max.above base      | at 9.50 ft, Xed<br>ating Mx-x, W<br>Its<br>Ratio =<br>+ Mxx + Myy<br>are | cc = 2.563 in, I<br>= 4.30 k<br>+D+0.60<br>y, NDS Eq. 3.<br>9.0<br>3.66<br>11.5<br>-0.21<br>1,014.<br>0.13<br>+D+0.60<br>8.9<br>50.3 | D = 2.0, S<br><b>76</b> : 1<br>DW<br>.9-<br>60 ft<br>20 k<br>32 k-ft<br>50 k-ft<br>10 psi<br><b>68</b> : 1<br>DW<br>40 ft | Maximum SERVICE<br>Top along Y-Y<br>Top along X-X<br>Maximum SERVICE Loa<br>Along Y-Y<br>for load combi<br>Along X-X<br>for load combi | 2.150 k<br>0.06216 k<br>ad Lateral Deflection<br>1.063 in at<br>nation : +0.420W<br>0.0 in at<br>nation : n/a | Bottom along Y-Y<br>Bottom along X-X 0.<br>ons<br>9.060 ft above base<br>0.0 ft above base<br>e stresses | 06216 k                |


|                  |                |                | Maximum Axial | + Bending | Stress Ratios | Maximum Shear Ratios |        |          |  |
|------------------|----------------|----------------|---------------|-----------|---------------|----------------------|--------|----------|--|
| Load Combination | С <sub>D</sub> | С <sub>Р</sub> | Stress Ratio  | Status    | Location      | Stress Ratio         | Status | Location |  |
| D Only           | 0.900          | 0.450          | 0.09698       | PASS      | 0.0 ft        | 0.004473             | PASS   | 18.0 ft  |  |
| +D+S             | 1.150          | 0.360          | 0.2642        | PASS      | 0.0 ft        | 0.009172             | PASS   | 18.0 ft  |  |
| +D+0.750S        | 1.150          | 0.360          | 0.2218        | PASS      | 0.0 ft        | 0.007754             | PASS   | 18.0 ft  |  |
| +D+0.60W         | 1.600          | 0.264          | 0.9376        | PASS      | 9.060 ft      | 0.1368               | PASS   | 8.940 ft |  |
| +D+0.450W        | 1.600          | 0.264          | 0.7107        | PASS      | 9.060 ft      | 0.1026               | PASS   | 8.940 ft |  |
| +D+0.750S+0.450W | 1.600          | 0.264          | 0.8829        | PASS      | 9.060 ft      | 0.1026               | PASS   | 8.940 ft |  |
| +0.60D+0.60W     | 1.600          | 0.264          | 0.8887        | PASS      | 9.060 ft      | 0.1368               | PASS   | 8.940 ft |  |
| +0.60D           | 1.600          | 0.264          | 0.05572       | PASS      | 0.0 ft        | 0.001510             | PASS   | 18.0 ft  |  |



# DESCRIPTION: Grid 8 Column

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

| Maximum Reactions          |                  |          |          |          |          |            |          | Note: C    | Only non | -zero i | reactions a | are listed. |
|----------------------------|------------------|----------|----------|----------|----------|------------|----------|------------|----------|---------|-------------|-------------|
|                            | X-X Axis R       | eaction  | k        | Y-Y Axis | Reaction | Axial Reac | tion     | My - End M | oments   | k-ft    | Mx - End    | Moments     |
| Load Combination           | @ Base           | @ Top    |          | @ Base   | @ Top    | @ Base     | )        | @ Base     | @ To     | 0       | @ Base      | @ Top       |
| D Only                     | -0.024           | 0.024    |          |          |          | 3.6        | 20       |            |          |         |             |             |
| +D+S                       | -0.062           | 0.062    |          |          |          | 10.1       | 00       |            |          |         |             |             |
| +D+0.750S                  | -0.053           | 0.053    |          |          |          | 8.4        | 80       |            |          |         |             |             |
| +D+0.60W                   | -0.024           | 0.024    |          | 1.290    | 1.290    | 3.6        | 20       |            |          |         |             |             |
| +D+0.450W                  | -0.024           | 0.024    |          | 0.968    | 0.968    | 3.6        | 20       |            |          |         |             |             |
| +D+0.750S+0.450W           | -0.053           | 0.053    |          | 0.968    | 0.968    | 8.4        | 80       |            |          |         |             |             |
| +0.60D+0.60W               | -0.014           | 0.014    |          | 1.290    | 1.290    | 2.1        | 72       |            |          |         |             |             |
| +0.60D                     | -0.014           | 0.014    |          |          |          | 2.1        | 72       |            |          |         |             |             |
| S Only                     | -0.038           | 0.038    |          |          |          | 6.4        | 80       |            |          |         |             |             |
| W Only                     |                  |          |          | 2.150    | 2.150    |            |          |            |          |         |             |             |
| Maximum Deflections for Lo | oad Combinations |          |          |          |          |            |          |            |          |         |             |             |
| Load Combination           | Max. X-X Defle   | ection D | Distance |          | Max. Y-Y | Deflection | Distance |            |          |         |             |             |
| +0.420W                    | 0.0000           | in       | 0.000    | ft       | 1.0      | )628 in    | 9.060    | ft         |          |         |             |             |





Code References

Wood Section Name

Wood Grading/Manuf.

Wood Member Type

Exact Width

230 psi

1650 psi

y-y Bending

2000

1060

0 pcf

Axial

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

DESCRIPTION: Grid 7 Column 18'

Load Combinations Used : ASCE 7-16

#### **General Information** Analysis Method : Allowable Stress Design End Fixities **Top & Bottom Pinned Overall Column Height** 17.833 ft (Used for non-slender calculations) Wood Species GluLam Column, Species: DF Wood Grade 2.0 L1, >= 4 Laminations Fb + 2400 psi F٧ Fb -2200 psi Ft Fc - Prll 2400 psi Density

650 psi

Basic

Minimum

x-x Bending

2000

1060

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

| Ex      | act Depth            | <b>6.0</b> in       | Cf or Cv for Bending                                          | 1.0                |  |  |  |  |
|---------|----------------------|---------------------|---------------------------------------------------------------|--------------------|--|--|--|--|
|         | Area                 | 30.750 in^2         | Cf or Cv for Compression                                      | 1.0                |  |  |  |  |
|         | lx                   | 92.250 in^4         | Cf or Cv for Tension                                          | 1.0                |  |  |  |  |
| ly      |                      | 67.306 in^4         | Cm : Wet Use Factor                                           | 1.0                |  |  |  |  |
|         |                      |                     | Ct : Temperature Factor                                       | 1.0                |  |  |  |  |
|         |                      |                     | Cfu : Flat Use Factor                                         | 1.0                |  |  |  |  |
| Axial   |                      |                     | Kf : Built-up columns                                         | 1.0 NDS 15.3.2     |  |  |  |  |
| 2000 ks |                      |                     | Use Cr : Repetitive ?                                         | No                 |  |  |  |  |
| Bra     | ace condition for de | flection (buckling) | along columns :                                               |                    |  |  |  |  |
|         | X-X (width) axis :   | Unbraced Len        | Unbraced Length for buckling ABOUT Y-Y Axis = 9.5 ft, K = 1.0 |                    |  |  |  |  |
|         | Y-Y (depth) axis     | : Unbraced Len      | igth for buckling ABOUT X-X Axi                               | s = 17.833 ft, K = |  |  |  |  |

Service loads entered. Load Factors will be applied for calculations.

5.125 in Allow Stress Modification Factors

5.125x6

Western

GLB

#### **Applied Loads**

Fc - Perp

E : Modulus of Elasticity . .

Column self weight included : 0.0 lbs \* Dead Load Factor AXIAL LOADS . . Roof Beam: Axial Load at 17.833 ft, D = 2.0, S = 3.50 k BENDING LOADS . . . Wind: Lat. Uniform Load creating Mx-x, W = 0.160 k/ft

#### **DESIGN SUMMARY**

# Bending & Shear Check Results

| PASS Max. Axial+Bending Stress Ratio =<br>Load Combination<br>Governing NDS Forumla 1Comp + Mxx, N<br>Location of max above base |                                                             | Maximum SERV<br>Top along Y-Y<br>Top along X-X       | <b>ICE Lateral Load F</b><br>1.427 k<br>0.0 k                                                                              | Reactions<br>Bottom along<br>Bottom along |                    | 1.427 k<br>0.0 k |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------|------------------|
| At maximum location values are<br>Applied Axial<br>Applied Mx<br>Applied My<br>Fc : Allowable                                    | 8.857 ft<br>2.0 k<br>3.816 k-ft<br>0.0 k-ft<br>670.77 psi   | Along Y-Y<br>for load co<br>Along X-X<br>for load co | Load Lateral Deflection<br>0.8378 in at<br>ombination : +0.420W<br>0.0 in at<br>ombination : n/a<br>to calculate allowable | 8.976 ft<br>0.0 ft                        |                    |                  |
| PASS Maximum Shear Stress Ratio =<br>Load Combination<br>Location of max.above base<br>Applied Design Shear<br>Allowable Shear   | 0.1135 : 1<br>+D+0.60W<br>0.0 ft<br>41.755 psi<br>368.0 psi |                                                      |                                                                                                                            | Bending (                                 | <u>Compression</u> | <u>Tension</u>   |

#### Load Combination Results

|                  |                |       | Maximum Axial | + Bending | Stress Ratios | Maximu       | m Shear Ra | <u>atios</u> |
|------------------|----------------|-------|---------------|-----------|---------------|--------------|------------|--------------|
| Load Combination | С <sub>D</sub> | СР    | Stress Ratio  | Status    | Location      | Stress Ratio | Status     | Location     |
| D Only           | 0.900          | 0.304 | 0.09910       | PASS      | 0.0 ft        | 0.0          | PASS       | 17.833 ft    |
| +D+S             | 1.150          | 0.241 | 0.2694        | PASS      | 0.0 ft        | 0.0          | PASS       | 17.833 ft    |
| +D+0.750S        | 1.150          | 0.241 | 0.2265        | PASS      | 0.0 ft        | 0.0          | PASS       | 17.833 ft    |
| +D+0.60W         | 1.600          | 0.175 | 0.4804        | PASS      | 8.857 ft      | 0.1135       | PASS       | 0.0 ft       |
| +D+0.450W        | 1.600          | 0.175 | 0.3626        | PASS      | 8.976 ft      | 0.08510      | PASS       | 0.0 ft       |
| +D+0.750S+0.450W | 1.600          | 0.175 | 0.4599        | PASS      | 8.976 ft      | 0.08510      | PASS       | 0.0 ft       |
| +0.60D+0.60W     | 1.600          | 0.175 | 0.4554        | PASS      | 8.857 ft      | 0.1135       | PASS       | 0.0 ft       |
| +0.60D           | 1.600          | 0.175 | 0.05818       | PASS      | 0.0 ft        | 0.0          | PASS       | 17.833 ft    |



# DESCRIPTION: Grid 7 Column 18'

Printed: 10 JUN 2022, 7:08AM File: Calcs.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

| Maximum Reactions          |                   |         |          |          |                | Note: 0    | Dnly non-zero i | eactions are listed |
|----------------------------|-------------------|---------|----------|----------|----------------|------------|-----------------|---------------------|
|                            | X-X Axis Rea      | ction k | Y-Y Axis | Reaction | Axial Reaction | My - End N | loments k-ft    | Mx - End Moments    |
| Load Combination           | @ Base @          | ₽ Тор   | @ Base   | @ Top    | @ Base         | @ Base     | @ Top           | @ Base @ Top        |
| D Only                     |                   |         |          |          | 2.000          |            |                 |                     |
| +D+S                       |                   |         |          |          | 5.500          |            |                 |                     |
| +D+0.750S                  |                   |         |          |          | 4.625          |            |                 |                     |
| +D+0.60W                   |                   |         | 0.856    | 0.856    | 2.000          |            |                 |                     |
| +D+0.450W                  |                   |         | 0.642    | 0.642    | 2.000          |            |                 |                     |
| +D+0.750S+0.450W           |                   |         | 0.642    | 0.642    | 4.625          |            |                 |                     |
| +0.60D+0.60W               |                   |         | 0.856    | 0.856    | 1.200          |            |                 |                     |
| +0.60D                     |                   |         |          |          | 1.200          |            |                 |                     |
| S Only                     |                   |         |          |          | 3.500          |            |                 |                     |
| W Only                     |                   |         | 1.427    | 1.427    |                |            |                 |                     |
| Maximum Deflections for Lo | oad Combinations  |         |          |          |                |            |                 |                     |
| Load Combination           | Max. X-X Deflecti | on Dist | ance     | Max. Y-Y | Deflection D   | istance    |                 |                     |
| +0.420W                    | 0.0000 i          | n C     | ).000 ft | 0.8      | 3378 in        | 8.976 ft   |                 |                     |





Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

DESCRIPTION: Grid 7 Column 9'

# Code References

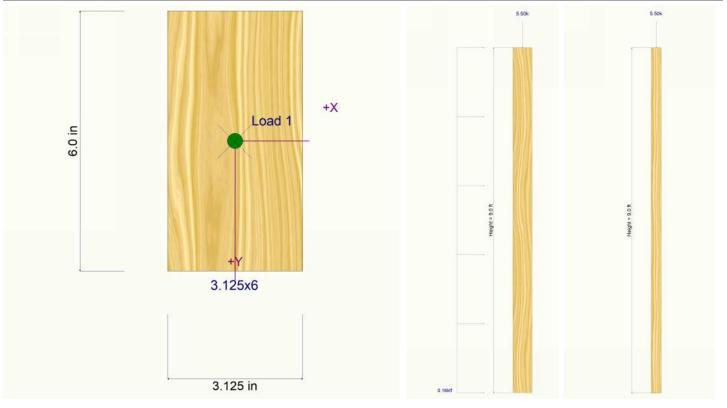
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

| General | Information |
|---------|-------------|
|         |             |

| Analysis Method<br>End Fixities<br>Overall Column I                                                    | Top & Bo<br>Height                                                                                                                                                                                   | e Stress Desi<br>ottom Pinned | gn<br>9 ft                                                                                            | Wood Section Name<br>Wood Grading/Manuf.<br>Wood Member Type                                                                                             | <b>3.125x6</b><br>Western<br>GLB                                                                                               |                                                                                                                                                                                                                                                                                                                           |                                                                    |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| ( Used for<br>Wood Species<br>Wood Grade<br>Fb +<br>Fb -<br>Fc - PrII<br>Fc - Perp<br>E : Modulus of E | r non-slender calc<br>GluLam Colu<br>2.0 L1, >= 4<br>2400 psi<br>2200 psi<br>2400 psi<br>650 psi<br>Clasticity<br>Basic<br>Minimum                                                                   | umn, Species                  | s<br>230 psi<br>1650 psi<br>0 pcf                                                                     | Exact Width<br>Exact Depth<br>Area<br>Ix<br>Iy<br>Axial<br>2000 ksi<br>Brace condition for de<br>X-X (width) axis :<br>Y-Y (depth) axis                  | 6.0 in<br>18.750 in <sup>2</sup><br>56.250 in <sup>4</sup><br>15.259 in <sup>4</sup>                                           | ow Stress Modification Fact<br>Cf or Cv for Bending<br>Cf or Cv for Compression<br>Cf or Cv for Tension<br>Cm : Wet Use Factor<br>Ct : Temperature Factor<br>Cfu : Flat Use Factor<br>Kf : Built-up columns<br>Use Cr : Repetitive ?<br>along columns :<br>ngth for buckling ABOUT Y-Y A<br>ngth for buckling ABOUT X-X A | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>NO <sup>S 15</sup><br>No |
| AXIAL LOADS<br>Roof Bean<br>BENDING LO                                                                 | veight included : (<br>S<br>n: Axial Load at 9<br>)ADS<br>m Load creating                                                                                                                            | 9.0 ft, D = 2.0,              | S = 3.50 k                                                                                            | Service load                                                                                                                                             | ls entered. Load                                                                                                               | Factors will be applied for                                                                                                                                                                                                                                                                                               | calculations.                                                      |
| PASS Max. Axi<br>Load C<br>Govern<br>Locatio<br>At maxi<br>App<br>App<br>App<br>Fc :                   | ear Check Result<br>ial+Bending Stress<br>combination<br>ning NDS Forumla<br>on of max.above base<br>imum location values<br>olied Axial<br>olied Mx<br>olied My<br>: Allowable<br>m Shear Stress Ra | Ratio =<br>Co<br>are          | 0.4159 :<br>+D+S<br>mp Only, fc/Fc'<br>9.0 ft<br>5.50 k<br>0.0 k-<br>0.0 k-<br>705.30 pt<br>0.09391 ; | Top along Y-Y<br>Top along X-X<br>Maximum SERVICE Loa<br>Along Y-Y 0<br>for load combin<br>ft Along X-X<br>si for load combin<br>Other Factors used to c | 0.720 k<br>0.0 k<br>d Lateral Deflectio<br>.08913 in at<br>nation : +0.420W<br>0.0 in at<br>nation : n/a<br>alculate allowable | Bottom along Y-Y<br>Bottom along X-X<br>ins<br>4.530 ft above base<br>0.0 ft above base                                                                                                                                                                                                                                   | 0.720 k<br>0.0 k                                                   |
| PASS Waxiiiiui                                                                                         | הא כבשור ווויסוופט המו                                                                                                                                                                               | tio =                         |                                                                                                       |                                                                                                                                                          |                                                                                                                                |                                                                                                                                                                                                                                                                                                                           | Tension                                                            |

# Load Combination Results

|                  | 0              | •     | Maximum Axial | + Bending | Stress Ratios | Maximu       | m Shear Ra | atios    |
|------------------|----------------|-------|---------------|-----------|---------------|--------------|------------|----------|
| Load Combination | C <sub>D</sub> | СР    | Stress Ratio  | Status    | Location      | Stress Ratio | Status     | Location |
| D Only           | 0.900          | 0.322 | 0.1532        | PASS      | 9.0 ft        | 0.0          | PASS       | 9.0 ft   |
| +D+S             | 1.150          | 0.256 | 0.4159        | PASS      | 9.0 ft        | 0.0          | PASS       | 9.0 ft   |
| +D+0.750S        | 1.150          | 0.256 | 0.3497        | PASS      | 0.0 ft        | 0.0          | PASS       | 9.0 ft   |
| +D+0.60W         | 1.600          | 0.186 | 0.2109        | PASS      | 4.470 ft      | 0.09391      | PASS       | 9.0 ft   |
| +D+0.450W        | 1.600          | 0.186 | 0.1638        | PASS      | 4.470 ft      | 0.07044      | PASS       | 9.0 ft   |
| +D+0.750S+0.450W | 1.600          | 0.186 | 0.3478        | PASS      | 4.470 ft      | 0.07044      | PASS       | 9.0 ft   |
| +0.60D+0.60W     | 1.600          | 0.186 | 0.1935        | PASS      | 4.470 ft      | 0.09391      | PASS       | 9.0 ft   |
| +0.60D           | 1.600          | 0.186 | 0.08973       | PASS      | 9.0 ft        | 0.0          | PASS       | 9.0 ft   |




### Printed: 9 JUN 2022, 1:17PM File: Calcs.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

# DESCRIPTION: Grid 7 Column 9'

| Maximum Reactions           |                     |           |          |          |             |          | Note: C    | Only non | -zero i | eactions a | re listed |
|-----------------------------|---------------------|-----------|----------|----------|-------------|----------|------------|----------|---------|------------|-----------|
|                             | X-X Axis Read       | tion k    | Y-Y Axis | Reaction | Axial React | on I     | My - End M | oments   | k-ft    | Mx - End   | Moments   |
| Load Combination            | @ Base @            | Тор       | @ Base   | @ Top    | @ Base      |          | @ Base     | @ To     | р       | @ Base     | @ Top     |
| D Only                      |                     |           |          |          | 2.00        | 00       |            |          |         |            |           |
| +D+S                        |                     |           |          |          | 5.50        | 00       |            |          |         |            |           |
| +D+0.750S                   |                     |           |          |          | 4.62        | 25       |            |          |         |            |           |
| +D+0.60W                    |                     |           | 0.432    | 0.432    | 2.00        | 00       |            |          |         |            |           |
| +D+0.450W                   |                     |           | 0.324    | 0.324    | 2.00        | 00       |            |          |         |            |           |
| +D+0.750S+0.450W            |                     |           | 0.324    | 0.324    | 4.62        | 25       |            |          |         |            |           |
| +0.60D+0.60W                |                     |           | 0.432    | 0.432    | 1.20        | 00       |            |          |         |            |           |
| +0.60D                      |                     |           |          |          | 1.20        | 00       |            |          |         |            |           |
| S Only                      |                     |           |          |          | 3.50        | 00       |            |          |         |            |           |
| W Only                      |                     |           | 0.720    | 0.720    |             |          |            |          |         |            |           |
| Maximum Deflections for Loa | d Combinations      |           |          |          |             |          |            |          |         |            |           |
| Load Combination            | Max. X-X Deflection | on Distan | се       | Max. Y-Y | Deflection  | Distance |            |          |         |            |           |
| +0.420W                     | 0.0000 in           | 0.00      | 00 ft    | 0.0      | )891 in     | 4.530    | ft         |          |         |            |           |
| Skotchoc                    |                     |           |          |          |             |          |            |          |         |            |           |





Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

DESCRIPTION: Grid 7 Column 10' (Shorter Roof Beams)

# Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

# **General Information**

| Analysis Method : Allowable Stress Design                                                                                                                                                                                                                    |                                                                                                                         |                                                                                                      |                                                                                                           |                                                                                                     |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------|
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                        |                                                                                                                         | Wood Section Name                                                                                    | 3.125x7.                                                                                                  | 5                                                                                                   |                      |
| End Fixities Top & Bottom Pinned                                                                                                                                                                                                                             |                                                                                                                         | Wood Grading/Manuf.                                                                                  | Western                                                                                                   |                                                                                                     |                      |
| Overall Column Height                                                                                                                                                                                                                                        | 18 ft                                                                                                                   | Wood Member Type                                                                                     | GLB                                                                                                       |                                                                                                     |                      |
| (Used for non-slender calculations)                                                                                                                                                                                                                          | _                                                                                                                       | Exact Width                                                                                          | 3.125 in Al                                                                                               | low Stress Modification Facto                                                                       | ors                  |
| Wood Species GluLam Column, Species: D                                                                                                                                                                                                                       | F                                                                                                                       | Exact Depth                                                                                          | 7.50 in                                                                                                   | Cf or Cv for Bending                                                                                | 1.0                  |
| Wood Grade2.0 L1, >= 4 Laminations                                                                                                                                                                                                                           | 000                                                                                                                     | Area                                                                                                 | 23.438 in^2                                                                                               | Cf or Cv for Compression                                                                            | 1.0                  |
| Fb + 2400 psi Fv                                                                                                                                                                                                                                             | 230 psi                                                                                                                 | lx                                                                                                   | 109.863 in^4                                                                                              | Cf or Cv for Tension                                                                                | 1.0                  |
| Fb - 2200 psi Ft                                                                                                                                                                                                                                             | 1650 psi                                                                                                                | ly                                                                                                   | 19.073 in^4                                                                                               | Cm : Wet Use Factor                                                                                 | 1.0                  |
| Fc - Prll 2400 psi Density                                                                                                                                                                                                                                   | 0 pcf                                                                                                                   |                                                                                                      |                                                                                                           | Ct : Temperature Factor                                                                             | 1.0                  |
| E: Modulus of Elasticity x-x Bending y-y Bending Axial Kf: Built-up columns 1.                                                                                                                                                                               |                                                                                                                         | 1.0                                                                                                  |                                                                                                           |                                                                                                     |                      |
| E : Modulus of Elasticity       x-x Bending       y-y Bending       Axial       Kf : Built-up columns       1.         Basic       2000       2000       2000 ksi       Use Cr : Repetitive ?       N                                                        |                                                                                                                         |                                                                                                      |                                                                                                           | 1.0 NDS 15.                                                                                         |                      |
|                                                                                                                                                                                                                                                              |                                                                                                                         | 0 ksi                                                                                                |                                                                                                           | Use Cr : Repetitive ?                                                                               | No                   |
| Minimum 1060                                                                                                                                                                                                                                                 | 1060                                                                                                                    | Brace condition for de                                                                               | eflection (buckling)                                                                                      | along columns :                                                                                     |                      |
|                                                                                                                                                                                                                                                              |                                                                                                                         | X-X (width) axis                                                                                     | Fully braced                                                                                              | against buckling ABOUT Y-Y Axi                                                                      | is                   |
|                                                                                                                                                                                                                                                              |                                                                                                                         | Y-Y (depth) axis                                                                                     | : Unbraced Le                                                                                             | ngth for buckling ABOUT X-X Ax                                                                      | tis = 18 ft, K = 1.0 |
| Applied Loads                                                                                                                                                                                                                                                |                                                                                                                         | Somiaa loop                                                                                          | to optorod I ood                                                                                          | Factors will be applied for                                                                         | adquiationa          |
| Roof Beam: Axial Load at 18.0 ft, D = 1.20, S<br>BENDING LOADS<br>Wind: Lat. Uniform Load creating Mx-x, W = 0<br>DESIGN SUMMARY                                                                                                                             |                                                                                                                         |                                                                                                      |                                                                                                           |                                                                                                     |                      |
| Bonding & Shoar Chack Bosults                                                                                                                                                                                                                                |                                                                                                                         |                                                                                                      |                                                                                                           |                                                                                                     |                      |
| Bending & Shear Check Results<br>PASS Max. Axial+Bending Stress Ratio =                                                                                                                                                                                      | <b>0.4781</b> : 1                                                                                                       | Maximum SERVICE                                                                                      |                                                                                                           | less time                                                                                           |                      |
| Load Combination<br>Governing NDS Forumla                                                                                                                                                                                                                    |                                                                                                                         | Top along Y-Y<br>Top along X-X                                                                       | 1.440 k<br>0.0 k                                                                                          |                                                                                                     | 1.440 k<br>0.0 k     |
| Governing NDS Forumla 1Comp + Mxx, ND<br>Location of max.above base                                                                                                                                                                                          |                                                                                                                         |                                                                                                      | 1.440 k<br>0.0 k                                                                                          | Bottom along Y-Y<br>Bottom along X-X                                                                | -                    |
| Governing NDS Forumla 1Comp + Mxx, ND<br>Location of max.above base<br>At maximum location values are                                                                                                                                                        | 9.060 ft                                                                                                                | Top along X-X<br>Maximum SERVICE Loa                                                                 | 1.440 k<br>0.0 k                                                                                          | Bottom along Y-Y<br>Bottom along X-X                                                                | -                    |
| Governing NDS Forumla 1Comp + Mxx, ND<br>Location of max.above base<br>At maximum location values are<br>Applied Axial                                                                                                                                       | 9S Eq. 3.9-3<br>9.060 ft<br>1.20 k                                                                                      | Top along X-X<br>Maximum SERVICE Loa<br>Along Y-Y                                                    | 1.440 k<br>0.0 k<br>ad Lateral Deflection                                                                 | Bottom along Y-Y<br>Bottom along X-X<br>Ins                                                         | -                    |
| Governing NDS Forumla 1Comp + Mxx, ND<br>Location of max.above base<br>At maximum location values are<br>Applied Axial<br>Applied Mx                                                                                                                         | S Eq. 3.9-3<br>9.060 ft<br>1.20 k<br>3.888 k-ft                                                                         | Top along X-X<br>Maximum SERVICE Loa<br>Along Y-Y                                                    | 1.440 k<br>0.0 k<br>ad Lateral Deflectio<br>0.7302 in at                                                  | Bottom along Y-Y<br>Bottom along X-X<br>Ins                                                         | -                    |
| Governing NDS Forumla 1Comp + Mxx, ND<br>Location of max.above base<br>At maximum location values are<br>Applied Axial                                                                                                                                       | 9S Eq. 3.9-3<br>9.060 ft<br>1.20 k<br>3.888 k-ft<br>0.0 k-ft                                                            | Top along X-X<br>Maximum SERVICE Loa<br>Along Y-Y<br>for load combin                                 | 1.440 k<br>0.0 k<br>ad Lateral Deflectio<br>0.7302 in at<br>nation : +0.420W<br>0.0 in at                 | Bottom along Y-Y<br>Bottom along X-X<br>ons<br>9.060 ft above base                                  | -                    |
| Governing NDS Forumla 1 Comp + Mxx, ND<br>Location of max.above base<br>At maximum location values are<br>Applied Axial<br>Applied Mx<br>Applied My<br>Fc : Allowable                                                                                        | S Eq. 3.9-3<br>9.060 ft<br>1.20 k<br>3.888 k-ft<br>0.0 k-ft<br>1,014.10 psi                                             | Top along X-X<br>Maximum SERVICE Loa<br>Along Y-Y<br>for load combin<br>Along X-X                    | 1.440 k<br>0.0 k<br>ad Lateral Deflectio<br>0.7302 in at<br>nation : +0.420W<br>0.0 in at<br>nation : n/a | Bottom along Y-Y<br>Bottom along X-X<br>ons<br>9.060 ft above base<br>0.0 ft above base<br>stresses | 0.0 k                |
| Governing NDS Forumla 1 Comp + Mxx, ND<br>Location of max.above base<br>At maximum location values are<br>Applied Axial<br>Applied Mx<br>Applied My<br>Fc : Allowable<br>PASS Maximum Shear Stress Ratio =                                                   | S Eq. 3.9-3<br>9.060 ft<br>1.20 k<br>3.888 k-ft<br>0.0 k-ft<br>1,014.10 psi<br><b>0.1503</b> : 1                        | Top along X-X<br>Maximum SERVICE Loa<br>Along Y-Y<br>for load combin<br>Along X-X<br>for load combin | 1.440 k<br>0.0 k<br>ad Lateral Deflectio<br>0.7302 in at<br>nation : +0.420W<br>0.0 in at<br>nation : n/a | Bottom along Y-Y<br>Bottom along X-X<br>ons<br>9.060 ft above base<br>0.0 ft above base             | -                    |
| Governing NDS Forumla 1 Comp + Mxx, ND<br>Location of max.above base<br>At maximum location values are<br>Applied Axial<br>Applied Mx<br>Applied My<br>Fc : Allowable<br>PASS Maximum Shear Stress Ratio =<br>Load Combination                               | PS Eq. 3.9-3<br>9.060 ft<br>1.20 k<br>3.888 k-ft<br>0.0 k-ft<br>1,014.10 psi<br><b>0.1503</b> : 1<br>+D+0.60W           | Top along X-X<br>Maximum SERVICE Loa<br>Along Y-Y<br>for load combin<br>Along X-X<br>for load combin | 1.440 k<br>0.0 k<br>ad Lateral Deflectio<br>0.7302 in at<br>nation : +0.420W<br>0.0 in at<br>nation : n/a | Bottom along Y-Y<br>Bottom along X-X<br>ons<br>9.060 ft above base<br>0.0 ft above base<br>stresses | 0.0 k                |
| Governing NDS Forumla 1 Comp + Mxx, ND<br>Location of max.above base<br>At maximum location values are<br>Applied Axial<br>Applied Mx<br>Applied My<br>Fc : Allowable<br>PASS Maximum Shear Stress Ratio =<br>Load Combination<br>Location of max.above base | S Eq. 3.9-3<br>9.060 ft<br>1.20 k<br>3.888 k-ft<br>0.0 k-ft<br>1,014.10 psi<br><b>0.1503</b> : 1<br>+D+0.60W<br>18.0 ft | Top along X-X<br>Maximum SERVICE Loa<br>Along Y-Y<br>for load combin<br>Along X-X<br>for load combin | 1.440 k<br>0.0 k<br>ad Lateral Deflectio<br>0.7302 in at<br>nation : +0.420W<br>0.0 in at<br>nation : n/a | Bottom along Y-Y<br>Bottom along X-X<br>ons<br>9.060 ft above base<br>0.0 ft above base<br>stresses | 0.0 k                |
| Governing NDS Forumla 1 Comp + Mxx, ND<br>Location of max.above base<br>At maximum location values are<br>Applied Axial<br>Applied Mx<br>Applied My<br>Fc : Allowable<br>PASS Maximum Shear Stress Ratio =<br>Load Combination                               | PS Eq. 3.9-3<br>9.060 ft<br>1.20 k<br>3.888 k-ft<br>0.0 k-ft<br>1,014.10 psi<br><b>0.1503</b> : 1<br>+D+0.60W           | Top along X-X<br>Maximum SERVICE Loa<br>Along Y-Y<br>for load combin<br>Along X-X<br>for load combin | 1.440 k<br>0.0 k<br>ad Lateral Deflectio<br>0.7302 in at<br>nation : +0.420W<br>0.0 in at<br>nation : n/a | Bottom along Y-Y<br>Bottom along X-X<br>ons<br>9.060 ft above base<br>0.0 ft above base<br>stresses | 0.0 k                |

|                  | 2              |       | Maximum Axial | + Bending | Stress Ratios | Maximum Shear Ratios |        |          |  |  |  |
|------------------|----------------|-------|---------------|-----------|---------------|----------------------|--------|----------|--|--|--|
| Load Combination | С <sub>D</sub> | СР    | Stress Ratio  | Status    | Location      | Stress Ratio         | Status | Location |  |  |  |
| D Only           | 0.900          | 0.450 | 0.05272       | PASS      | 0.0 ft        | 0.0                  | PASS   | 18.0 ft  |  |  |  |
| +D+S             | 1.150          | 0.360 | 0.1330        | PASS      | 0.0 ft        | 0.0                  | PASS   | 18.0 ft  |  |  |  |
| +D+0.750S        | 1.150          | 0.360 | 0.1126        | PASS      | 0.0 ft        | 0.0                  | PASS   | 18.0 ft  |  |  |  |
| +D+0.60W         | 1.600          | 0.264 | 0.4781        | PASS      | 9.060 ft      | 0.1503               | PASS   | 18.0 ft  |  |  |  |
| +D+0.450W        | 1.600          | 0.264 | 0.3592        | PASS      | 8.940 ft      | 0.1127               | PASS   | 18.0 ft  |  |  |  |
| +D+0.750S+0.450W | 1.600          | 0.264 | 0.3920        | PASS      | 8.940 ft      | 0.1127               | PASS   | 18.0 ft  |  |  |  |
| +0.60D+0.60W     | 1.600          | 0.264 | 0.4669        | PASS      | 9.060 ft      | 0.1503               | PASS   | 18.0 ft  |  |  |  |
| +0.60D           | 1.600          | 0.264 | 0.03029       | PASS      | 0.0 ft        | 0.0                  | PASS   | 18.0 ft  |  |  |  |




### Printed: 9 JUN 2022, 1:25PM File: Calcs.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

# DESCRIPTION: Grid 7 Column 10' (Shorter Roof Beams)

| Maximum Reactions          |                     |       |          |          |                  | Note: C    | Only non | -zero i | eactions a | are listed |
|----------------------------|---------------------|-------|----------|----------|------------------|------------|----------|---------|------------|------------|
|                            | X-X Axis Reaction   | n k   | Y-Y Axis | Reaction | Axial Reaction   | My - End M | oments   | k-ft    | Mx - End   | Moments    |
| Load Combination           | @ Base @ T          | ор    | @ Base   | @ Top    | @ Base           | @ Base     | @ To     | р       | @ Base     | @ Top      |
| D Only                     |                     |       |          |          | 1.200            |            |          |         |            |            |
| +D+S                       |                     |       |          |          | 3.100            |            |          |         |            |            |
| +D+0.750S                  |                     |       |          |          | 2.625            |            |          |         |            |            |
| +D+0.60W                   |                     |       | 0.864    | 0.864    | 1.200            |            |          |         |            |            |
| +D+0.450W                  |                     |       | 0.648    | 0.648    | 1.200            |            |          |         |            |            |
| +D+0.750S+0.450W           |                     |       | 0.648    | 0.648    | 2.625            |            |          |         |            |            |
| +0.60D+0.60W               |                     |       | 0.864    | 0.864    | 0.720            |            |          |         |            |            |
| +0.60D                     |                     |       |          |          | 0.720            |            |          |         |            |            |
| S Only                     |                     |       |          |          | 1.900            |            |          |         |            |            |
| W Only                     |                     |       | 1.440    | 1.440    |                  |            |          |         |            |            |
| Maximum Deflections for Lo | ad Combinations     |       |          |          |                  |            |          |         |            |            |
| Load Combination           | Max. X-X Deflection | Dista | nce      | Max. Y-Y | Deflection Dista | ance       |          |         |            |            |
| 0.100111                   |                     | -     |          |          |                  |            |          |         |            |            |







Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

DESCRIPTION: Grid 7 Column 18' (Shorter Roof Beams)

# Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

# **General Information**

| Overall Column H                                                                                                                                                                      | Top & Bo<br>Height                                                                                                                                                                                                                                                                        | e Stress Des<br>ottom Pinned         | •                                                                                                                                | Wood Section Name<br>Wood Grading/Manuf.<br>Wood Member Type                                                                                                                     | <b>5.125x5.</b><br>Western<br>GLB                                                                                                  | 5                                                                                                                                                                                                                                                                                       |                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| ( Used for<br>Wood Species<br>Wood Grade<br>Fb +<br>Fb -<br>Fc - Prll<br>Fc - Perp<br>E : Modulus of El                                                                               | spruce - Pin<br>No. 1/No. 2<br>875 psi<br>875 psi<br>1150 psi<br>425 psi<br>lasticity<br>Basic<br>Minimum                                                                                                                                                                                 | ,                                    | 135 psi<br>450 psi<br>26.22 pcf<br>y-y Bending<br>1400<br>510                                                                    | Exact Width<br>Exact Depth<br>Area<br>Ix<br>Iy<br>Axial<br>1400 ksi<br>Brace condition for de<br>X-X (width) axis i                                                              | 5.5 in<br>28.188 in <sup>2</sup><br>71.056 in <sup>4</sup><br>61.697 in <sup>4</sup>                                               | ow Stress Modification Fact<br>Cf or Cv for Bending<br>Cf or Cv for Compression<br>Cf or Cv for Tension<br>Cm : Wet Use Factor<br>Ct : Temperature Factor<br>Cfu : Flat Use Factor<br>Kf : Built-up columns<br>Use Cr : Repetitive ?<br>along columns :<br>gainst buckling ABOUT Y-Y A: | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0 NDS 15.3<br>No |
| Applied Loads                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                         |                                      |                                                                                                                                  | Y-Y (depth) axis<br>Service load                                                                                                                                                 |                                                                                                                                    | gth for buckling ABOUT X-X A<br>Factors will be applied fo                                                                                                                                                                                                                              |                                                              |
| BENDING LO                                                                                                                                                                            | n: Axial Load at 1                                                                                                                                                                                                                                                                        | -1.2                                 | -0.0 = 1.70 K                                                                                                                    |                                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                         |                                                              |
| Wind: Lat.<br>DESIGN SUMN                                                                                                                                                             | Uniform Load cr<br>MARY                                                                                                                                                                                                                                                                   |                                      |                                                                                                                                  |                                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                         |                                                              |
| Wind: Lat.<br>DESIGN SUMM<br>Bending & Shea<br>FAIL Max. Axia<br>Load Co<br>Governi<br>Location<br>At maxia<br>Appl<br>Appl<br>Fc :<br>PASS Maximum                                   | Uniform Load cr<br>MARY<br>ar Check Resu<br>ial+Bending Stress<br>ombination                                                                                                                                                                                                              | Its<br>Ratio =<br>Comp + Mxx,<br>are |                                                                                                                                  | Top along Y-Y<br>Top along X-X<br>ft Maximum SERVICE Loa<br>Along Y-Y<br>k for load combi<br>k-ft Along X-X<br>k-ft for load combi<br>Other Factors used to c                    | 1.440 k<br>0.0 k<br>ad Lateral Deflection<br>1.613 in at<br>nation : $+0.420W$<br>0.0 in at<br>nation : $n/a$<br>value allowable s | Bottom along Y-Y<br>Bottom along X-X<br>ns<br>9.060 ft above base<br>0.0 ft above base                                                                                                                                                                                                  |                                                              |
| Wind: Lat.<br>DESIGN SUMM<br>Bending & Shea<br>FAIL Max. Axia<br>Load Co<br>Governi<br>Location<br>At maxia<br>Appl<br>Appl<br>Fc :<br>PASS Maximum<br>Load Co<br>Location<br>Applied | Uniform Load cr<br>MARY<br>ar Check Resu<br>ial+Bending Stress<br>ombination<br>ing NDS Forumla 1 (<br>n of max.above base<br>mum location values<br>lied Axial<br>lied Mx<br>lied My<br>Allowable<br>m Shear Stress Ra<br>ombination<br>n of max.above base<br>Design Shear<br>ole Shear | Its<br>Ratio =<br>Comp + Mxx,<br>are | N = 0.160 k/ft<br><b>1.629</b><br>D+0.750S+0.450W<br>NDS Eq. 3.9-3<br>8.940<br>2.717<br>2.916<br>0.0<br>267.265<br><b>0.2129</b> | Top along Y-Y<br>Top along X-X<br>ft Maximum SERVICE Loa<br>Along Y-Y<br>k for load combin<br>k-ft Along X-X<br>psi for load combin<br>Other Factors used to c<br>1<br>ft<br>psi | 1.440 k<br>0.0 k<br>ad Lateral Deflection<br>1.613 in at<br>nation : $+0.420W$<br>0.0 in at<br>nation : $n/a$<br>value allowable s | Bottom along Y-Y<br>Bottom along X-X<br>ns<br>9.060 ft above base<br>0.0 ft above base<br>stresses                                                                                                                                                                                      | 0.0 k                                                        |

|                  | 2              |       | Maximum Axial | + Bending | Stress Ratios | Maximu       | m Shear Ra | atios    |
|------------------|----------------|-------|---------------|-----------|---------------|--------------|------------|----------|
| Load Combination | C <sub>D</sub> | СР    | Stress Ratio  | Status    | Location      | Stress Ratio | Status     | Location |
| D Only           | 0.900          | 0.254 | 0.1744        | PASS      | 0.0 ft        | 0.0          | PASS       | 18.0 ft  |
| +D+S             | 1.150          | 0.200 | 0.4271        | PASS      | 0.0 ft        | 0.0          | PASS       | 18.0 ft  |
| +D+0.750S        | 1.150          | 0.200 | 0.3636        | PASS      | 0.0 ft        | 0.0          | PASS       | 18.0 ft  |
| +D+0.60W         | 1.600          | 0.145 | 1.581         | FAIL !    | 8.940 ft      | 0.2129       | PASS       | 0.0 ft   |
| +D+0.450W        | 1.600          | 0.145 | 1.193         | FAIL !    | 8.940 ft      | 0.1596       | PASS       | 18.0 ft  |
| +D+0.750S+0.450W | 1.600          | 0.145 | 1.629         | FAIL !    | 8.940 ft      | 0.1596       | PASS       | 18.0 ft  |
| +0.60D+0.60W     | 1.600          | 0.145 | 1.446         | FAIL !    | 8.940 ft      | 0.2129       | PASS       | 0.0 ft   |
| +0.60D           | 1.600          | 0.145 | 0.1029        | PASS      | 0.0 ft        | 0.0          | PASS       | 18.0 ft  |



### Printed: 9 JUN 2022, 1:26PM File: Calcs.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

# DESCRIPTION: Grid 7 Column 18' (Shorter Roof Beams)

| Maximum Reactions               |                |         |          |          |            |            |          | Note: O     | nly non- | -zero r | eactions a | re listed. |
|---------------------------------|----------------|---------|----------|----------|------------|------------|----------|-------------|----------|---------|------------|------------|
|                                 | X-X Axis R     | eaction | k        | Y-Y Axis | Reaction   | Axial Reac | tion     | My - End Mo | oments   | k-ft    | Mx - End   | Moments    |
| Load Combination                | @ Base         | @ Top   | (        | Base     | @ Top      | @ Base     | 9        | @ Base      | @ Top    | C       | @ Base     | @ Top      |
| D Only                          |                |         |          |          |            | 1.2        | 92       |             |          |         |            |            |
| +D+S                            |                |         |          |          |            | 3.1        | 92       |             |          |         |            |            |
| +D+0.750S                       |                |         |          |          |            | 2.7        | 17       |             |          |         |            |            |
| +D+0.60W                        |                |         |          | 0.864    | 0.864      | 1.2        | 92       |             |          |         |            |            |
| +D+0.450W                       |                |         |          | 0.648    | 0.648      | 1.2        | 92       |             |          |         |            |            |
| +D+0.750S+0.450W                |                |         |          | 0.648    | 0.648      | 2.7        | 17       |             |          |         |            |            |
| +0.60D+0.60W                    |                |         |          | 0.864    | 0.864      | 0.7        | 75       |             |          |         |            |            |
| +0.60D                          |                |         |          |          |            | 0.7        | 75       |             |          |         |            |            |
| S Only                          |                |         |          |          |            | 1.9        | 00       |             |          |         |            |            |
| W Only                          |                |         |          | 1.440    | 1.440      |            |          |             |          |         |            |            |
| Maximum Deflections for Load Co | ombinations    |         |          |          |            |            |          |             |          |         |            |            |
| Load Combination                | Max. X-X Defle | ection  | Distance |          | Max. Y-Y I | Deflection | Distance | :           |          |         |            |            |
| +0.420W                         | 0.0000         | in      | 0.000    | ft       | 1.6        | 128 in     | 9.060    | ft          |          |         |            |            |





Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

DESCRIPTION: 2B10 Post

# Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

# **General Information**

| Analysis Method :<br>End Fixities<br>Overall Column He   | Top & Bott                                                                                     | Stress Desig<br>com Pinned | gn<br>8 ft                                               | Wood Section Nam<br>Wood Grading/Manuf<br>Wood Member Type                                                                          |                                                                                                                                                   | ∟umber                                                                                                                                                                                                                                                                                                                         |                                                            |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
|                                                          | non-slender calcu<br>Spruce - Pine<br>No. 1/No. 2<br>875 psi<br>875 psi<br>1150 psi<br>425 psi | Fv<br>Fv<br>Ft<br>Density  | 135 psi<br>450 psi<br>26.22 pcf                          | Exact Width<br>Exact Depth<br>Area<br>Ix<br>Iy<br>Axial<br>1400 ksi<br>Brace condition for o<br>X-X (width) axis<br>Y-Y (depth) axi | 7.50 in Al<br>5.50 in<br>41.250 in <sup>2</sup><br>103.984 in <sup>4</sup><br>193.359 in <sup>4</sup><br>deflection (buckling)<br>s : Unbraced Le | low Stress Modification Factor<br>Cf or Cv for Bending<br>Cf or Cv for Compression<br>Cf or Cv for Tension<br>Cm : Wet Use Factor<br>Cf : Temperature Factor<br>Cfu : Flat Use Factor<br>Kf : Built-up columns<br>Use Cr : Repetitive ?<br>along columns :<br>ngth for buckling ABOUT Y-Y Av<br>ngth for buckling ABOUT X-X Av | 1.30<br>1.10<br>1.30<br>1.0<br>1.0<br>1.0<br>NDS 15.<br>No |
| Applied Loads<br>Column self we                          | eight included : 6                                                                             | 0.088 lbs * De             | ead Load Factor                                          | Service loa                                                                                                                         | ads entered. Load                                                                                                                                 | Factors will be applied for                                                                                                                                                                                                                                                                                                    | calculations.                                              |
| AXIAL LOADS                                              |                                                                                                |                            |                                                          |                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                |                                                            |
| DESIGN SUMM                                              | ARY                                                                                            |                            |                                                          |                                                                                                                                     |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                |                                                            |
| Bending & Shea<br>PASS Max. Axia<br>Load Cor<br>Governin | I+Bending Stress F                                                                             | Ratio =                    | <b>0.3837</b> :<br>+D+S<br>mp Only, fc/Fc'               | 1 <b>Maximum SERVIC</b><br>Top along Y-Y<br>Top along X-X                                                                           | E Lateral Load F<br>0.0 k<br>0.0 k                                                                                                                | Reactions<br>Bottom along Y-Y<br>Bottom along X-X                                                                                                                                                                                                                                                                              | 0.0 k<br>0.0 k                                             |
| Location<br>At maxim<br>Applie<br>Applie<br>Applie       | of max.above base<br>um location values a<br>ed Axial<br>ed Mx                                 |                            | 0.0 f<br>0.0 f<br>15.460 k<br>0.0 k<br>0.0 k<br>976.78 p | t Maximum SERVICE Lu<br>Along Y-Y<br>for load com<br>ft Along X-X                                                                   | oad Lateral Deflectio<br>0.0 in at<br>bination : $n/a$<br>0.0 in at<br>bination : $n/a$                                                           | 0.0 ft above base                                                                                                                                                                                                                                                                                                              |                                                            |
| Load Cor<br>Location                                     | Shear Stress Ration<br>nbination<br>of max.above base                                          | 0 =                        | <b>0.0</b> :<br>+0.60D<br>8.0 ft                         | 1<br>t                                                                                                                              |                                                                                                                                                   | Bending Compression                                                                                                                                                                                                                                                                                                            | <u>Tension</u>                                             |

# Load Combination Results

Applied Design Shear Allowable Shear

|                   |                | <u>Maximum Axial + Bending Stress Ratios</u> |   |               |          |             | Maxim            | Ratios     |                                 |
|-------------------|----------------|----------------------------------------------|---|---------------|----------|-------------|------------------|------------|---------------------------------|
| Load Combination  | C <sub>D</sub> | С <sub>Р</sub>                               |   | Stress Ratio  | Status   | Location    | Stress Ratio     | Status     | Location                        |
| D Only            | 0.900          | 0.752                                        |   | 0.1857        | PASS     | 0.0 ft      | 0.0              | PASS       | 8.0 ft                          |
| +D+S              | 1.150          | 0.671                                        |   | 0.3837        | PASS     | 0.0 ft      | 0.0              | PASS       | 8.0 ft                          |
| +D+0.750S         | 1.150          | 0.671                                        |   | 0.3285        | PASS     | 0.0 ft      | 0.0              | PASS       | 8.0 ft                          |
| +0.60D            | 1.600          | 0.547                                        |   | 0.08612       | PASS     | 0.0 ft      | 0.0              | PASS       | 8.0 ft                          |
| Maximum Reactions |                |                                              |   |               |          |             | Note: Only non-  | zero react | ions are listed.                |
|                   | X-X Axis R     | eaction                                      | k | Y-Y Axis Reac | tion Axi | al Reaction | My - End Moments | k-ft M     | <ul> <li>End Moments</li> </ul> |
| Load Combination  | @ Base         | @ Top                                        |   | @ Base @ T    | Гор      | @ Base      | @ Base @ Top     | @          | Base @ Top                      |
| D Only            |                |                                              |   |               |          | 6.560       |                  |            |                                 |
| +D+S              |                |                                              |   |               |          | 15.460      |                  |            |                                 |
| +D+0.750S         |                |                                              |   |               |          | 13.235      |                  |            |                                 |

0.0 psi 216.0 psi



### Printed: 10 JUN 2022, 7:17AM File: Calcs.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

# DESCRIPTION: 2B10 Post

| Maximum Reactions | X-X Axis Reaction | k | Y-Y Axis Reaction | Axial Reaction | Note: C<br>My - End M | Only non-zero r<br>oments k-ft | reactions a<br>Mx - End N |       |
|-------------------|-------------------|---|-------------------|----------------|-----------------------|--------------------------------|---------------------------|-------|
| Load Combination  | @ Base @ Top      | ĸ | @ Base @ Top      | @ Base         | @ Base                | @ Top                          | @ Base                    | @ Top |
| +0.60D            |                   |   |                   | 3.936          |                       |                                |                           |       |
| S Only            |                   |   |                   | 8.900          |                       |                                |                           |       |

| Load Combination | Max. X-X Deflection | Distance | Max. Y-Y Deflection | Distance |  |
|------------------|---------------------|----------|---------------------|----------|--|
| D Only           | 0.0000 in           | 0.000 ft | 0.0000 in           | 0.000 ft |  |
| +D+S             | 0.0000 in           | 0.000 ft | 0.0000 in           | 0.000 ft |  |
| +D+0.750S        | 0.0000 in           | 0.000 ft | 0.0000 in           | 0.000 ft |  |
| +0.60D           | 0.0000 in           | 0.000 ft | 0.0000 in           | 0.000 ft |  |
| S Only           | 0.0000 in           | 0.000 ft | 0.0000 in           | 0.000 ft |  |
| Skatabas         |                     |          |                     |          |  |





Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

DESCRIPTION: 2B8 Post At Grid I

# Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

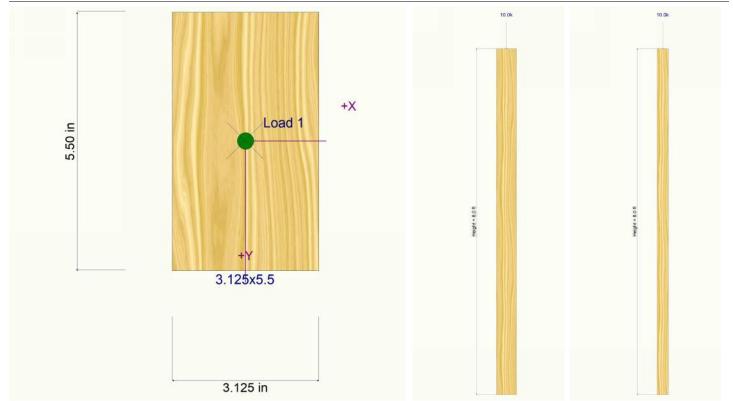
# **General Information**

| Analysis Method :<br>End Fixities<br>Overall Column He | Top & Bo                                                          | Stress Desi<br>ttom Pinned | ign<br>8 ft                                                                       | Wood Section Name<br>Wood Grading/Manuf.<br>Wood Member Type                                                                         | 3.125x5.9<br>Southern<br>GLB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                |                                                       |
|--------------------------------------------------------|-------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|                                                        | No. 1/No. 2<br>875.0 psi<br>875.0 psi<br>1,150.0 psi<br>425.0 psi | ,                          | 135.0 psi<br>450.0 psi<br>26.220 pcf<br>y-y Bending Axia<br>1,400.0 1,40<br>510.0 | Exact Width<br>Exact Depth<br>Area<br>Ix<br>Iy<br>al<br>00.0 ksi<br>Brace condition for de<br>X-X (width) axis :<br>Y-Y (depth) axis | 5.50 in<br>17.188 in <sup>2</sup><br>43.327 in <sup>4</sup><br>13.987 in <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | low Stress Modification Factor<br>Cf or Cv for Bending<br>Cf or Cv for Compression<br>Cf or Cv for Tension<br>Cm : Wet Use Factor<br>Ct : Temperature Factor<br>Cfu : Flat Use Factor<br>Kf : Built-up columns<br>Use Cr : Repetitive ?<br>along columns :<br>ngth for buckling ABOUT Y-Y A:<br>ngth for buckling ABOUT X-X A: | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>NDS 1<br>No |
|                                                        |                                                                   |                            |                                                                                   | <u> </u>                                                                                                                             | In a straight for the straight of the straight | Enclose with the second state                                                                                                                                                                                                                                                                                                  | and a set of the set                                  |
| AXIAL LOADS                                            | oad at 8.0 ft, L                                                  |                            | lead Load Factor                                                                  | Service load                                                                                                                         | ls entered. Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Factors will be applied for                                                                                                                                                                                                                                                                                                    | calculations.                                         |

# Load Combination Results

|                   | 2              |                | Maximum Axi    | Stress Ratios | Maximum Shear Ratios |                  |              |                |
|-------------------|----------------|----------------|----------------|---------------|----------------------|------------------|--------------|----------------|
| Load Combination  | С <sub>D</sub> | С <sub>Р</sub> | Stress Ratio   | Status        | Location             | Stress Ratio     | Status       | Location       |
| D Only            | 0.900          | 0.850          | 0.001657       | PASS          | 0.0 ft               | 0.0              | PASS         | 8.0 ft         |
| +D+L              | 1.000          | 0.821          | 0.6180         | PASS          | 0.0 ft               | 0.0              | PASS         | 8.0 ft         |
| +D+0.750L         | 1.250          | 0.743          | 0.4101         | PASS          | 0.0 ft               | 0.0              | PASS         | 8.0 ft         |
| +0.60D            | 1.600          | 0.636          | 0.000746       | PASS          | 0.0 ft               | 0.0              | PASS         | 8.0 ft         |
| Maximum Reactions |                |                |                |               |                      | Note: Only non-  | zero reactio | ns are listed. |
|                   | X-X Axis R     | eaction        | k Y-Y Axis Rea | iction Axi    | al Reaction          | My - End Moments | k-ft Mx -    | End Moments    |
| Load Combination  | @ Base         | @ Top          | @ Base @       | ? Тор         | @ Base               | @ Base @ Top     | @ Ba         | ise @ Top      |
| D Only            |                |                |                |               | 0.025                |                  |              |                |
| +D+L              |                |                |                |               | 10.025               |                  |              |                |
| +D+0.750L         |                |                |                |               | 7.525                |                  |              |                |




### Printed: 13 JUN 2022, 2:46PM File: Calcs.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

# DESCRIPTION: 2B8 Post At Grid I

|                  | X-X Axis F | Reaction | k | Y-Y Axis | Reaction | Axial Reaction | My - End M | oments k-ft | Mx - End | Moments |
|------------------|------------|----------|---|----------|----------|----------------|------------|-------------|----------|---------|
| Load Combination | @ Base     | @ Top    |   | @ Base   | @ Top    | @ Base         | @ Base     | @ Top       | @ Base   | @ Top   |
| +0.60D           |            |          |   |          |          | 0.015          |            |             |          |         |
| L Only           |            |          |   |          |          | 10.000         |            |             |          |         |

| Max. X-X Deflection | Distance                                         | Max. Y-Y Deflection                                                                  | Distance                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------|--------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0000 in           | 0.000 ft                                         | 0.0000 in                                                                            | 0.000 ft                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0000 in           | 0.000 ft                                         | 0.0000 in                                                                            | 0.000 ft                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0000 in           | 0.000 ft                                         | 0.0000 in                                                                            | 0.000 ft                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0000 in           | 0.000 ft                                         | 0.0000 in                                                                            | 0.000 ft                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0000 in           | 0.000 ft                                         | 0.0000 in                                                                            | 0.000 ft                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -                   | 0.0000 in<br>0.0000 in<br>0.0000 in<br>0.0000 in | 0.0000 in 0.000 ft<br>0.0000 in 0.000 ft<br>0.0000 in 0.000 ft<br>0.0000 in 0.000 ft | 0.0000         in         0.000         ft         0.0000         in           0.0000         in         0.000         ft         0.0000         in | 0.0000         in         0.000         ft         0.0000         in         0.000         ft           0.0000         in         0.000         ft         0.0000         in         0.000         ft |





Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

DESCRIPTION: 1B8 Post

# Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

# General Information

| Analysis Method :<br>End Fixities<br>Overall Column He                                                      | Top & Bott<br>eight                                                                                    | Stress Desig<br>tom Pinned                         | jn<br>8 ft                   | Wood Section Name<br>Wood Grading/Manuf.<br>Wood Member Type                                                                            | <b>5.125x</b><br>Wester<br>GLB                                                       | -                                                                                                                                                                                                                                                                                                                                             |                                                          |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| ( Used for n<br>Wood Species<br>Wood Grade<br>Fb +<br>Fb -<br>Fc - Prll<br>Fc - Perp<br>E : Modulus of Ela: | GluLam Colur<br>GluLam Colur<br>2.0 L1, >= 4<br>2400 psi<br>2200 psi<br>2400 psi<br>650 psi<br>sticity | mn, Species:<br>Laminations<br>Fv<br>Ft<br>Density | 230 psi<br>1650 psi<br>0 pcf | Exact Width<br>Exact Depth<br>Area<br>Ix<br>Iy<br>Axial<br>2000 ksi<br>Brace condition for de<br>X-X (width) axis :<br>Y-Y (depth) axis | 6.0 in<br>30.750 in <sup>2</sup><br>92.250 in <sup>4</sup><br>67.306 in <sup>4</sup> | Allow Stress Modification Factor<br>Cf or Cv for Bending<br>Cf or Cv for Compression<br>Cf or Cv for Compression<br>Cm : Wet Use Factor<br>Ct : Temperature Factor<br>Cfu : Flat Use Factor<br>Kf : Built-up columns<br>Use Cr : Repetitive ?<br>g) along columns :<br>.ength for buckling ABOUT Y-Y Axi<br>.ength for buckling ABOUT X-X Axi | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>NOS 15.3<br>No |
| AXIAL LOADS                                                                                                 |                                                                                                        |                                                    |                              | Service load                                                                                                                            | s entered. Loa                                                                       | ad Factors will be applied for                                                                                                                                                                                                                                                                                                                | calculations.                                            |
| DESIGN SUMMA                                                                                                |                                                                                                        | = 7.90, L = 10.                                    | 30, S = 4.50 k               |                                                                                                                                         |                                                                                      |                                                                                                                                                                                                                                                                                                                                               |                                                          |

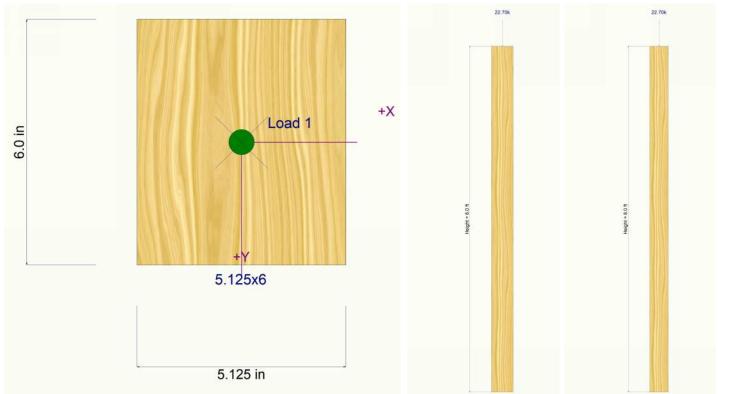
| 0.0 k-ft                |
|-------------------------|
| 1,853.90 psi            |
| <b>0.0</b> :1<br>+0.60D |
| +0.00D<br>8.0 ft        |
| 0.0 psi                 |
| 368.0 psi               |
|                         |

| Along Y-Y            | 0.0 in            | at       | 0.0    | ft above base |         |
|----------------------|-------------------|----------|--------|---------------|---------|
| for load con         | nbination : n/a   |          |        |               |         |
| Along X-X            | 0.0 in            | at       | 0.0    | ft above base |         |
| for load cor         | mbination : n/a   |          |        |               |         |
| Other Factors used t | o calculate allov | vable st | resses |               |         |
|                      |                   | Be       | ending | Compression   | Tension |

# Load Combination Results

|                   | 0              |                |                 |           | Stress Ratios | Maximum Shear Ratios |              |                 |  |
|-------------------|----------------|----------------|-----------------|-----------|---------------|----------------------|--------------|-----------------|--|
| Load Combination  | C <sub>D</sub> | С <sub>Р</sub> | Stress Ratio    | Status    | Location      | Stress Ratio         | Status       | Location        |  |
| D Only            | 0.900          | 0.808          | 0.1471          | PASS      | 0.0 ft        | 0.0                  | PASS         | 8.0 ft          |  |
| +D+L              | 1.000          | 0.772          | 0.3193          | PASS      | 0.0 ft        | 0.0                  | PASS         | 8.0 ft          |  |
| +D+S              | 1.150          | 0.718          | 0.2036          | PASS      | 0.0 ft        | 0.0                  | PASS         | 8.0 ft          |  |
| +D+0.750L         | 1.250          | 0.682          | 0.2485          | PASS      | 0.0 ft        | 0.0                  | PASS         | 8.0 ft          |  |
| +D+0.750L+0.750S  | 1.150          | 0.718          | 0.3120          | PASS      | 0.0 ft        | 0.0                  | PASS         | 8.0 ft          |  |
| +0.60D            | 1.600          | 0.571          | 0.07033         | PASS      | 0.0 ft        | 0.0                  | PASS         | 8.0 ft          |  |
| Maximum Reactions |                |                |                 |           |               | Note: Only non-      | zero reactio | ons are listed. |  |
|                   | X-X Axis R     | eaction        | k Y-Y Axis Read | tion Axia | al Reaction   | My - End Moments     | k-ft Mx -    | End Moments     |  |
| Load Combination  | @ Base         | @ Top          | @ Base @        | Тор       | @ Base        | @ Base @ Top         | @ Ba         | ise @ Top       |  |
| D Only            |                |                |                 |           | 7.900         |                      |              |                 |  |




Printed: 14 JUN 2022, 1:01PM File: Calcs.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

# DESCRIPTION: 1B8 Post

| Maximum Reactions          |                     |        |          |          |             |          | Note: C   | Only nor | -zero i | eactions a | re listed |
|----------------------------|---------------------|--------|----------|----------|-------------|----------|-----------|----------|---------|------------|-----------|
|                            | X-X Axis Reaction   | k      | Y-Y Axis | Reaction | Axial React | tion M   | y - End M | oments   | k-ft    | Mx - End   | Moments   |
| Load Combination           | @ Base @ Top        |        | @ Base   | @ Top    | @ Base      | e @      | Base      | @ To     | р       | @ Base     | @ Top     |
| +D+L                       |                     |        |          |          | 18.2        | 00       |           |          |         |            |           |
| +D+S                       |                     |        |          |          | 12.4        | 00       |           |          |         |            |           |
| +D+0.750L                  |                     |        |          |          | 15.6        | 25       |           |          |         |            |           |
| +D+0.750L+0.750S           |                     |        |          |          | 19.0        | 00       |           |          |         |            |           |
| +0.60D                     |                     |        |          |          | 4.7         | 40       |           |          |         |            |           |
| L Only                     |                     |        |          |          | 10.3        | 00       |           |          |         |            |           |
| S Only                     |                     |        |          |          | 4.5         | 00       |           |          |         |            |           |
| Maximum Deflections for Lo | oad Combinations    |        |          |          |             |          |           |          |         |            |           |
| Load Combination           | Max. X-X Deflection | Distar | се       | Max. Y-Y | Deflection  | Distance |           |          |         |            |           |
| D.O.I                      | 0.0000 '            | 0.0    | 00 0     | 0        | 0000 1      | 0.000    | 0         |          |         |            |           |

| D Only           | 0.0000 | in 0.000 | ft 0.00 | 00 in | 0.000 | ft |
|------------------|--------|----------|---------|-------|-------|----|
| +D+L             | 0.0000 | in 0.000 | ft 0.00 | 00 in | 0.000 | ft |
| +D+S             | 0.0000 | in 0.000 | ft 0.00 | 00 in | 0.000 | ft |
| +D+0.750L        | 0.0000 | in 0.000 | ft 0.00 | 00 in | 0.000 | ft |
| +D+0.750L+0.750S | 0.0000 | in 0.000 | ft 0.00 | 00 in | 0.000 | ft |
| +0.60D           | 0.0000 | in 0.000 | ft 0.00 | 00 in | 0.000 | ft |
| L Only           | 0.0000 | in 0.000 | ft 0.00 | 00 in | 0.000 | ft |
| S Only           | 0.0000 | in 0.000 | ft 0.00 | 00 in | 0.000 | ft |
| -                |        |          |         |       |       |    |





Service loads entered. Load Factors will be applied for calculations.

DESCRIPTION: 1B9 Post

#### Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

# **General Information**

|                                                                                    | ution                                                                                        |                                 |                                 |                                                                                     |                                                                                                                   |                                                                                                                                                                                        |                                                      |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Analysis Method<br>End Fixities<br>Overall Column H                                | Top & Bo                                                                                     | e Stress Des<br>ottom Pinned    | 0                               | Wood Section Name<br>Wood Grading/Manuf.<br>Wood Member Type                        | <b>3-2x6</b><br>Graded I<br>Sawn                                                                                  | Lumber                                                                                                                                                                                 |                                                      |
| ( Used for<br>Wood Species<br>Wood Grade<br>Fb +<br>Fb -<br>Fc - Prll<br>Fc - Perp | non-slender calo<br>Spruce - Pir<br>No. 1/No. 2<br>875 psi<br>875 psi<br>1150 psi<br>425 psi | ne - Fir<br>Fv<br>Ft<br>Density | 135 psi<br>450 psi<br>26.22 pcf | Exact Width<br>Exact Depth<br>Area<br>Ix<br>Iy                                      | <b>4.50</b> in Al<br><b>5.50</b> in<br>24.750 in <sup>2</sup><br>62.391 in <sup>4</sup><br>41.766 in <sup>4</sup> | llow Stress Modification Factor<br>Cf or Cv for Bending<br>Cf or Cv for Compression<br>Cf or Cv for Tension<br>Cm : Wet Use Factor<br>Ct : Temperature Factor<br>Cfu : Flat Use Factor | rs<br>1.30<br>1.10<br>1.30<br>1.0<br>1.0<br>1.0      |
| E : Modulus of El                                                                  | asticity<br>Basic<br>Minimum                                                                 | x-x Bending<br>1400<br>510      | y-y Bending<br>1400<br>510      | Axial<br>1400 ksi<br>Brace condition for de<br>X-X (width) axis<br>Y-Y (depth) axis | Unbraced Le                                                                                                       | Kf : Built-up columns<br>Use Cr : Repetitive ?                                                                                                                                         | <b>1.0</b> NDS 15.<br><b>No</b><br>s = 8 ft, K = 1.0 |

### Applied Loads

Column self weight included : 36.053 lbs \* Dead Load Factor AXIAL LOADS . . . 1B9: Axial Load at 8.0 ft, D = 6.30, L = 6.30, S = 3.90, W = 0.50, E = 1.40 k

### DESIGN SUMMARY

# Bending & Shear Check Results

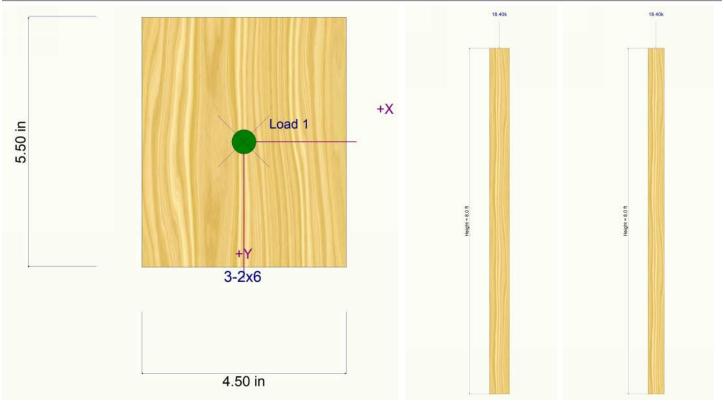
| Denaing a Onear Oneok Resaits                                |                      |                       |                      |                     |         |
|--------------------------------------------------------------|----------------------|-----------------------|----------------------|---------------------|---------|
| PASS Max. Axial+Bending Stress Ratio =                       | <b>0.7466</b> : 1    | Maximum SERVIC        | CE Lateral Load      | Reactions           |         |
| Load Combination                                             | +D+0.750L+0.750S     | Top along Y-Y         | 0.0 k                | Bottom along Y-Y    | 0.0 k   |
| Governing NDS Forumla                                        | Comp Only, fc/Fc'    | Top along X-X         | 0.0 k                | Bottom along X-X    | 0.0 k   |
| Location of max.above base<br>At maximum location values are | 0.0 ft               | Maximum SERVICE L     | oad Lateral Deflect  | ions                |         |
|                                                              | 10,0001              | Along Y-Y             | 0.0 in at            | 0.0 ft above base   |         |
| Applied Axial                                                | 13.986 k             | for load com          |                      |                     |         |
| Applied Mx<br>Applied My                                     | 0.0 k-ft<br>0.0 k-ft | Along X-X             | 0.0 in at            | 0.0 ft above base   |         |
| Fc : Allowable                                               | 756.93 psi           | for load com          | nbination : n/a      |                     |         |
|                                                              |                      | Other Factors used to | o calculate allowabl | e stresses          |         |
| PASS Maximum Shear Stress Ratio =                            | <b>0.0</b> : 1       |                       |                      | Bending Compression | Tension |
| Load Combination                                             | +0.60D+0.70E         |                       |                      |                     |         |
| Location of max.above base                                   | 8.0 ft               |                       |                      |                     |         |
| Applied Design Shear                                         | 0.0 psi              |                       |                      |                     |         |
| Allowable Shear                                              | 216.0 psi            |                       |                      |                     |         |
|                                                              |                      |                       |                      |                     |         |

#### Load Combination Results

|                          | ~     |       | Maximum Axial | + Bending | Stress Ratios | Maximu       | m Shear Ra | <u>atios</u> |
|--------------------------|-------|-------|---------------|-----------|---------------|--------------|------------|--------------|
| Load Combination         | CD    | СР    | Stress Ratio  | Status    | Location      | Stress Ratio | Status     | Location     |
| D Only                   | 0.900 | 0.614 | 0.3663        | PASS      | 0.0 ft        | 0.0          | PASS       | 8.0 ft       |
| +D+L                     | 1.000 | 0.574 | 0.7035        | PASS      | 0.0 ft        | 0.0          | PASS       | 8.0 ft       |
| +D+S                     | 1.150 | 0.520 | 0.5464        | PASS      | 0.0 ft        | 0.0          | PASS       | 8.0 ft       |
| +D+0.750L                | 1.250 | 0.489 | 0.5780        | PASS      | 0.0 ft        | 0.0          | PASS       | 8.0 ft       |
| +D+0.750L+0.750S         | 1.150 | 0.520 | 0.7466        | PASS      | 0.0 ft        | 0.0          | PASS       | 8.0 ft       |
| +D+0.60W                 | 1.600 | 0.401 | 0.3301        | PASS      | 0.0 ft        | 0.0          | PASS       | 8.0 ft       |
| +D+0.750L+0.450W         | 1.600 | 0.401 | 0.5614        | PASS      | 0.0 ft        | 0.0          | PASS       | 8.0 ft       |
| +D+0.750L+0.750S+0.450W  | 1.600 | 0.401 | 0.7069        | PASS      | 0.0 ft        | 0.0          | PASS       | 8.0 ft       |
| +0.60D+0.60W             | 1.600 | 0.401 | 0.2040        | PASS      | 0.0 ft        | 0.0          | PASS       | 8.0 ft       |
| +D+0.70E                 | 1.600 | 0.401 | 0.3639        | PASS      | 0.0 ft        | 0.0          | PASS       | 8.0 ft       |
| +D+0.750L+0.750S+0.5250E | 1.600 | 0.401 | 0.7323        | PASS      | 0.0 ft        | 0.0          | PASS       | 8.0 ft       |
| +0.60D+0.70E             | 1.600 | 0.401 | 0.2379        | PASS      | 0.0 ft        | 0.0          | PASS       | 8.0 ft       |



Printed: 22 JUL 2022, 9:53AM File: Calcs -Updated.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS


# DESCRIPTION: 1B9 Post

| Maximum Reactions                                                                                                                                                                          |                                                                                                                      |                                              |                                                                                                 |                                                          |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 | Note: C                                                  |      |      |          |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------|------|------|----------|------|
|                                                                                                                                                                                            | X-X Axis Rea                                                                                                         |                                              |                                                                                                 |                                                          |                                                                                                  | xial Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 | /ly - End M                                              |      | k-ft | Mx - End |      |
| Load Combination                                                                                                                                                                           | @ Base (                                                                                                             | @ Top                                        | (                                                                                               | Base                                                     | @ Top                                                                                            | @ Base                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                 | @ Base                                                   | @ To | 0    | @ Base   | @ To |
| D Only                                                                                                                                                                                     |                                                                                                                      |                                              |                                                                                                 |                                                          |                                                                                                  | 6.33                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                               |                                                          |      |      |          |      |
| +D+L                                                                                                                                                                                       |                                                                                                                      |                                              |                                                                                                 |                                                          |                                                                                                  | 12.63                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                               |                                                          |      |      |          |      |
| +D+S                                                                                                                                                                                       |                                                                                                                      |                                              |                                                                                                 |                                                          |                                                                                                  | 10.23                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                               |                                                          |      |      |          |      |
| +D+0.750L                                                                                                                                                                                  |                                                                                                                      |                                              |                                                                                                 |                                                          |                                                                                                  | 11.06                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                               |                                                          |      |      |          |      |
| +D+0.750L+0.750S                                                                                                                                                                           |                                                                                                                      |                                              |                                                                                                 |                                                          |                                                                                                  | 13.98                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                               |                                                          |      |      |          |      |
| +D+0.60W                                                                                                                                                                                   |                                                                                                                      |                                              |                                                                                                 |                                                          |                                                                                                  | 6.63                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                               |                                                          |      |      |          |      |
| +D+0.750L+0.450W                                                                                                                                                                           |                                                                                                                      |                                              |                                                                                                 |                                                          |                                                                                                  | 11.28                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                                                               |                                                          |      |      |          |      |
| +D+0.750L+0.750S+0.450W                                                                                                                                                                    |                                                                                                                      |                                              |                                                                                                 |                                                          |                                                                                                  | 14.21                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                               |                                                          |      |      |          |      |
| +0.60D+0.60W                                                                                                                                                                               |                                                                                                                      |                                              |                                                                                                 |                                                          |                                                                                                  | 4.10                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                               |                                                          |      |      |          |      |
| +D+0.70E                                                                                                                                                                                   |                                                                                                                      |                                              |                                                                                                 |                                                          |                                                                                                  | 7.31                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                               |                                                          |      |      |          |      |
| +D+0.750L+0.750S+0.5250E                                                                                                                                                                   |                                                                                                                      |                                              |                                                                                                 |                                                          |                                                                                                  | 14.72                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                               |                                                          |      |      |          |      |
| +0.60D+0.70E                                                                                                                                                                               |                                                                                                                      |                                              |                                                                                                 |                                                          |                                                                                                  | 4.78                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                               |                                                          |      |      |          |      |
| L Only                                                                                                                                                                                     |                                                                                                                      |                                              |                                                                                                 |                                                          |                                                                                                  | 6.30                                                                                                                                                                                                                                                                                                                                                                                                                                           | )                                                                                               |                                                          |      |      |          |      |
| S Only                                                                                                                                                                                     |                                                                                                                      |                                              |                                                                                                 |                                                          |                                                                                                  | 3.90                                                                                                                                                                                                                                                                                                                                                                                                                                           | )                                                                                               |                                                          |      |      |          |      |
| W Only                                                                                                                                                                                     |                                                                                                                      |                                              |                                                                                                 |                                                          |                                                                                                  | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                           | )                                                                                               |                                                          |      |      |          |      |
| E Only                                                                                                                                                                                     |                                                                                                                      |                                              |                                                                                                 |                                                          |                                                                                                  | 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                           | )                                                                                               |                                                          |      |      |          |      |
| Maximum Deflections for Loa                                                                                                                                                                | ad Combinations                                                                                                      |                                              |                                                                                                 |                                                          |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                                          |      |      |          |      |
| Load Combination                                                                                                                                                                           | Max. X-X Deflect                                                                                                     | tion                                         | Distance                                                                                        |                                                          | Max. Y-Y Def                                                                                     | lection                                                                                                                                                                                                                                                                                                                                                                                                                                        | Distance                                                                                        |                                                          |      |      |          |      |
| D Only                                                                                                                                                                                     | 0.0000                                                                                                               | in                                           | 0.000                                                                                           | ft                                                       | 0.000                                                                                            | ) in                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                                                                                           | ft                                                       |      |      |          |      |
|                                                                                                                                                                                            | 0.0000                                                                                                               |                                              |                                                                                                 | £1                                                       |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |                                                          |      |      |          |      |
| +D+L                                                                                                                                                                                       | 0.0000                                                                                                               | in                                           | 0.000                                                                                           | ft                                                       | 0.000                                                                                            | ) in                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                                                                                           | ft                                                       |      |      |          |      |
|                                                                                                                                                                                            |                                                                                                                      |                                              | 0.000<br>0.000                                                                                  |                                                          | 0.000                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000<br>0.000                                                                                  |                                                          |      |      |          |      |
| +D+L                                                                                                                                                                                       | 0.0000                                                                                                               | in                                           |                                                                                                 |                                                          |                                                                                                  | ) in                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                 | ft                                                       |      |      |          |      |
| +D+L<br>+D+S                                                                                                                                                                               | 0.0000<br>0.0000                                                                                                     | in<br>in                                     | 0.000                                                                                           | ft                                                       | 0.000                                                                                            | 0 in<br>0 in                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000                                                                                           | ft<br>ft                                                 |      |      |          |      |
| +D+L<br>+D+S<br>+D+0.750L                                                                                                                                                                  | 0.0000<br>0.0000<br>0.0000                                                                                           | in<br>in<br>in                               | 0.000<br>0.000                                                                                  | ft<br>ft                                                 | 0.000<br>0.000                                                                                   | ) in<br>) in<br>) in                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000<br>0.000                                                                                  | ft<br>ft<br>ft                                           |      |      |          |      |
| +D+L<br>+D+S<br>+D+0.750L<br>+D+0.750L+0.750S                                                                                                                                              | 0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                 | in<br>in<br>in<br>in                         | 0.000<br>0.000<br>0.000                                                                         | ft<br>ft<br>ft                                           | 0.000<br>0.000<br>0.000                                                                          | 0 in<br>0 in<br>0 in<br>0 in                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000<br>0.000<br>0.000                                                                         | ft<br>ft<br>ft<br>ft                                     |      |      |          |      |
| +D+L<br>+D+S<br>+D+0.750L<br>+D+0.750L+0.750S<br>+D+0.60W                                                                                                                                  | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                       | in<br>in<br>in<br>in                         | 0.000<br>0.000<br>0.000<br>0.000                                                                | ft<br>ft<br>ft<br>ft                                     | 0.000<br>0.000<br>0.000<br>0.000                                                                 | ) in<br>) in<br>) in<br>) in<br>) in                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000<br>0.000<br>0.000<br>0.000                                                                | ft<br>ft<br>ft<br>ft                                     |      |      |          |      |
| +D+L<br>+D+S<br>+D+0.750L<br>+D+0.750L+0.750S<br>+D+0.60W<br>+D+0.750L+0.450W                                                                                                              | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                             | in<br>in<br>in<br>in<br>in                   | 0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                       | ft<br>ft<br>ft<br>ft<br>ft                               | 0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                        | ) in<br>) in<br>) in<br>) in<br>) in<br>) in                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                       | ft<br>ft<br>ft<br>ft<br>ft                               |      |      |          |      |
| +D+L<br>+D+S<br>+D+0.750L<br>+D+0.750L+0.750S<br>+D+0.60W<br>+D+0.750L+0.450W<br>+D+0.750L+0.750S+0.450W                                                                                   | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                   | in<br>in<br>in<br>in<br>in                   | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                              | ft<br>ft<br>ft<br>ft<br>ft<br>ft                         | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                               | 0 in<br>0 in<br>0 in<br>0 in<br>0 in<br>0 in<br>0 in                                                                                                                                                                                                                                                                                                                                                                                           | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                              | ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft                   |      |      |          |      |
| +D+L<br>+D+S<br>+D+0.750L<br>+D+0.750L+0.750S<br>+D+0.60W<br>+D+0.750L+0.450W<br>+D+0.750L+0.750S+0.450W<br>+0.60D+0.60W                                                                   | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                         | in<br>in<br>in<br>in<br>in<br>in             | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                     | ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft                   | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                      | 5 in<br>5 in<br>5 in<br>5 in<br>5 in<br>5 in<br>5 in<br>5 in                                                                                                                                                                                                                                                                                                                                                                                   | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                     | ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft                   |      |      |          |      |
| +D+L<br>+D+S<br>+D+0.750L<br>+D+0.750L+0.750S<br>+D+0.60W<br>+D+0.750L+0.450W<br>+D+0.750L+0.750S+0.450W<br>+0.60D+0.60W<br>+D+0.70E                                                       | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                               | in<br>in<br>in<br>in<br>in<br>in             | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                            | ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft             | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                             | 5 in<br>5 in<br>5 in<br>5 in<br>5 in<br>5 in<br>5 in<br>5 in                                                                                                                                                                                                                                                                                                                                                                                   | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                            | ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft             |      |      |          |      |
| +D+L<br>+D+S<br>+D+0.750L<br>+D+0.750L+0.750S<br>+D+0.60W<br>+D+0.750L+0.450W<br>+D+0.750L+0.750S+0.450W<br>+0.60D+0.60W<br>+D+0.70E<br>+D+0.750L+0.750S+0.5250E                           | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                     | in<br>in<br>in<br>in<br>in<br>in             | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                   | ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                    | 5 in<br>5 in<br>5 in<br>5 in<br>5 in<br>5 in<br>5 in<br>5 in                                                                                                                                                                                                                                                                                                                                                                                   | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                   | ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft       |      |      |          |      |
| +D+L<br>+D+S<br>+D+0.750L<br>+D+0.750L+0.750S<br>+D+0.60W<br>+D+0.750L+0.450W<br>+D+0.750L+0.750S+0.450W<br>+0.60D+0.60W<br>+D+0.70E<br>+D+0.750L+0.750S+0.5250E<br>+0.60D+0.70E           | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000           | in<br>in<br>in<br>in<br>in<br>in<br>in       | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000          | ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft       | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000           | <ul> <li>0 in</li> </ul>                                                                       | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000          | ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft |      |      |          |      |
| +D+L<br>+D+S<br>+D+0.750L<br>+D+0.750L+0.750S<br>+D+0.60W<br>+D+0.750L+0.450W<br>+D+0.750L+0.750S+0.450W<br>+0.60D+0.60W<br>+D+0.70E<br>+D+0.750L+0.750S+0.5250E<br>+0.60D+0.70E<br>L Only | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | in<br>in<br>in<br>in<br>in<br>in<br>in<br>in | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 | ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft       | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | <ul> <li>in</li> </ul> | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 | ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft<br>ft |      |      |          |      |



> Printed: 22 JUL 2022, 9:53AM File: Calcs -Updated.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

DESCRIPTION: 1B9 Post





DESCRIPTION: 1B5 Col

# Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

# General Information

| Analysis Method :<br>End Fixities<br>Overall Column He                               | Top & Bo                                                                             | e Stress Des<br>ottom Pinned | 0                                | Wood Section Name<br>Wood Grading/Manuf.<br>Wood Member Type  | <b>3.125x6</b><br>Western<br>GLB                                                                                  |                                                                                                                                                               |                                        |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------|----------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| ( Used for r<br>Wood Species<br>Wood Grade<br>Fb +<br>Fb -<br>Fc - Prll<br>Fc - Perp | 000-slender calo<br>DF/DF<br>24F - E4<br>2400 psi<br>1450 psi<br>1700 psi<br>650 psi | Fv<br>Fv<br>Ft<br>Density    | 265 psi<br>1100 psi<br>31.21 pcf | Exact Width<br>Exact Depth<br>Area<br>Ix<br>Iy                | <b>3.125</b> in Al<br><b>6.0</b> in<br>18.750 in <sup>2</sup><br>56.250 in <sup>4</sup><br>15.259 in <sup>4</sup> | low Stress Modification Factors<br>Cf or Cv for Bending<br>Cf or Cv for Compression<br>Cf or Cv for Tension<br>Cm : Wet Use Factor<br>Ct : Temperature Factor | 1.0<br>1.0<br>1.0<br>1.0<br>1.0        |
| E : Modulus of Ela                                                                   |                                                                                      | x-x Bending<br>1800          | y-y Bending<br>1700              | Axial<br>1800 ksi                                             |                                                                                                                   | Cfu : Flat Use Factor<br>Kf : Built-up columns                                                                                                                | 1.0<br>1.0 <sup>NDS 15.3.2</sup><br>No |
|                                                                                      | Minimum                                                                              | 950                          | 900                              | Brace condition for d<br>X-X (width) axis<br>Y-Y (depth) axis | : Unbraced Lei                                                                                                    | Use Cr : Repetitive ?<br>along columns :<br>ngth for buckling ABOUT Y-Y Axis =<br>ngth for buckling ABOUT X-X Axis =                                          | = 7.75 ft, K = 1.                      |
| Applied Loads                                                                        |                                                                                      |                              |                                  | Service loa                                                   | ds entered. Load                                                                                                  | Factors will be applied for ca                                                                                                                                | lculations.                            |

| Column self weight included : 31.494 lbs * Dead Load Factor |
|-------------------------------------------------------------|
| AXIAL LOADS                                                 |
| Axial Load at 7.750 ft, D = 2.40, L = 7.40 k                |

#### **DESIGN SUMMARY**

# Bending & Shear Check Results

| Denaing a onear oneok results                                |                   |                       |                     |                     |         |
|--------------------------------------------------------------|-------------------|-----------------------|---------------------|---------------------|---------|
| PASS Max. Axial+Bending Stress Ratio =                       | <b>0.6486</b> : 1 | Maximum SERVIC        | E Lateral Load      | Reactions           |         |
| Load Combination                                             | +D+L              | Top along Y-Y         | 0.0 k               | Bottom along Y-Y    | 0.0 k   |
| Governing NDS Forumla                                        | Comp Only, fc/Fc' | Top along X-X         | 0.0 k               | Bottom along X-X    | 0.0 k   |
| Location of max.above base<br>At maximum location values are | 0.0 ft            | Maximum SERVICE Lo    | oad Lateral Deflect | ions                |         |
|                                                              | 0.004             | Along Y-Y             | 0.0 in at           | 0.0 ft above base   |         |
| Applied Axial                                                | 9.831 k           | for load com          | bination : n/a      |                     |         |
| Applied Mx                                                   | 0.0 k-ft          | Along X-X             | 0.0 in at           | 0.0 ft above base   |         |
| Applied My<br>Fc : Allowable                                 | 0.0 k-ft          | 5                     | bination : n/a      |                     |         |
| FC : Allowable                                               | 808.42 psi        | Other Factors used to |                     | a strassas          |         |
| PASS Maximum Shear Stress Ratio =                            | <b>0.0</b> : 1    |                       |                     | Bending Compression | Tension |
| Load Combination                                             | +0.60D            |                       |                     |                     |         |
| Location of max.above base                                   | <b>7.750</b> ft   |                       |                     |                     |         |
| Applied Design Shear                                         | 0.0 psi           |                       |                     |                     |         |
| Allowable Shear                                              | 424.0 psi         |                       |                     |                     |         |
|                                                              |                   |                       |                     |                     |         |

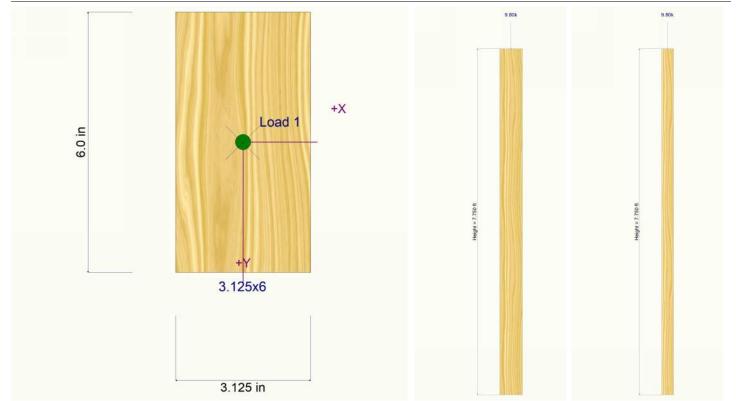
### Load Combination Results

|                   | -              |         | Maximum Axia    | + Bending | Stress Ratios | Maxim            | um Shear Ra  | atios           |
|-------------------|----------------|---------|-----------------|-----------|---------------|------------------|--------------|-----------------|
| Load Combination  | C <sub>D</sub> | СР      | Stress Ratio    | Status    | Location      | Stress Ratio     | Status       | Location        |
| D Only            | 0.900          | 0.520   | 0.1630          | PASS      | 0.0 ft        | 0.0              | PASS         | 7.750 ft        |
| +D+L              | 1.000          | 0.476   | 0.6486          | PASS      | 0.0 ft        | 0.0              | PASS         | 7.750 ft        |
| +D+0.750L         | 1.250          | 0.390   | 0.5137          | PASS      | 0.0 ft        | 0.0              | PASS         | 7.750 ft        |
| +0.60D            | 1.600          | 0.310   | 0.09221         | PASS      | 0.0 ft        | 0.0              | PASS         | 7.750 ft        |
| Maximum Reactions |                |         |                 |           |               | Note: Only non-  | zero reactio | ons are listed. |
|                   | X-X Axis R     | eaction | k Y-Y Axis Read | tion Axia | al Reaction   | My - End Moments | k-ft Mx -    | End Moments     |
| Load Combination  | @ Base         | @ Top   | @ Base @        | Тор       | @ Base        | @ Base @ Top     | @ Ba         | ise @ Top       |
| D Only            |                |         |                 |           | 2.431         |                  |              |                 |
| +D+L              |                |         |                 |           | 9.831         |                  |              |                 |
| +D+0.750L         |                |         |                 |           | 7.981         |                  |              |                 |



Printed: 13 JUN 2022, 1:28PM File: Calcs.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS


#### DESCRIPTION: 1B5 Col

|                  | X-X Axis I | Reaction | k | Y-Y Axis | Reaction | Axial Reaction |        | only non-zero i oments k-ft | Mx - End |       |
|------------------|------------|----------|---|----------|----------|----------------|--------|-----------------------------|----------|-------|
| Load Combination | @ Base     | @ Top    |   | @ Base   | @ Top    | @ Base         | @ Base | @ Top                       | @ Base   | @ Top |
| +0.60D           |            |          |   |          |          | 1.459          |        |                             |          |       |
| L Only           |            |          |   |          |          | 7.400          |        |                             |          |       |

#### Maximum Deflections for Load Combinations

|                  | Ecaa compinationic  |          |                     |          |  |
|------------------|---------------------|----------|---------------------|----------|--|
| Load Combination | Max. X-X Deflection | Distance | Max. Y-Y Deflection | Distance |  |
| D Only           | 0.0000 in           | 0.000 ft | 0.0000 in           | 0.000 ft |  |
| +D+L             | 0.0000 in           | 0.000 ft | 0.0000 in           | 0.000 ft |  |
| +D+0.750L        | 0.0000 in           | 0.000 ft | 0.0000 in           | 0.000 ft |  |
| +0.60D           | 0.0000 in           | 0.000 ft | 0.0000 in           | 0.000 ft |  |
| L Only           | 0.0000 in           | 0.000 ft | 0.0000 in           | 0.000 ft |  |
| Clustopas        |                     |          |                     |          |  |

Sketches





Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

DESCRIPTION: 2B5 Post

#### Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

#### **General Information**

| Analysis Method :<br>End Fixities |                                                      | Stress Designation Stress Design | gn                                  | Wood Section Name<br>Wood Grading/Manuf. |                           | Lumber                                           |                    |
|-----------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------|---------------------------|--------------------------------------------------|--------------------|
| Overall Column H                  | leight                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.5 ft                              | Wood Member Type                         | Sawn                      |                                                  |                    |
| -                                 | non-slender calc                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Exact Width                              | <b>9.0</b> in             | Allow Stress Modification Factor                 | ors                |
| Wood Species<br>Wood Grade        | Spruce - Pine<br>No. 1/No. 2                         | e - Fir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     | Exact Depth<br>Area                      | <b>5.50</b> in 49.50 in^2 | Cf or Cv for Bending<br>Cf or Cv for Compression | 1.30<br>1.10       |
| Fb +                              | <b>875.0</b> psi                                     | Fv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 135.0 psi                           | lx                                       | 124.781 in <sup>4</sup>   | Cf or Cv for Tension                             | 1.30               |
| Fb -                              | 875.0 psi                                            | Ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 450.0 psi                           |                                          |                           | Cm : Wet Use Factor                              | 1.0                |
| Fc - Prll                         | 1,150.0 psi                                          | Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26.220 pcf                          | ly                                       | 334.125 in^4              | Ct : Temperature Factor                          | 1.0                |
| Fc - Perp                         | 425.0 psi                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·                                   |                                          |                           | Cfu : Flat Use Factor                            | 1.0                |
| E : Modulus of Ela                | asticity                                             | x-x Bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | y-y Bending A                       | xial                                     |                           | Kf : Built-up columns                            | 1.0<br>1.0 NDS 15. |
|                                   | Basic                                                | 1,400.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,400.0 1,4                         | 400.0 ksi                                |                           | Use Cr : Repetitive ?                            | No                 |
| AXIAL LOADS                       | eight included : 8<br><br>∟oad at 9.50 ft, E         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ead Load Factor<br>.10, S = 11.10 k | Y-Y (depth) axis                         |                           | ength for buckling ABOUT X-X A                   |                    |
| ending & Shea<br>PASS Max. Axia   | ar Check Resul                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>0.5144</b> : 1<br>+D+S           | Maximum SERVIC                           | E Lateral Load<br>0.0 k   | Reactions<br>Bottom along Y-Y                    | 0.0 k              |
| Governir                          | ng NDS Forumla                                       | Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mp Only, fc/Fc'                     | Top along X-X                            | 0.0 k                     | Bottom along X-X                                 | 0.0 k              |
|                                   | of max.above base                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0 ft                              | Maximum SERVICE Lo                       |                           | 0                                                | -                  |
| Appli<br>Appli                    | num location values<br>ied Axial<br>ied Mx<br>ied My | are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.086 k<br>0.0 k-1<br>0.0 k-1      | Along Y-Y<br>for load comb               | 0.0 in at                 | 0.0 ft above base                                |                    |
|                                   | Allowable                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 788.87 ps                           | for lood comb                            | pination : n/a            |                                                  |                    |
| 10.7                              |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 700.07 ps                           | Other Eactors used to                    |                           |                                                  |                    |

Other Factors used to calculate allowable stresses . . . Bending <u>Compression</u> <u>Tension</u>

#### Load Combination Results

PASS Maximum Shear Stress Ratio =

Applied Design Shear

Location of max.above base

Load Combination

Allowable Shear

|                   | 0              | •       | N | laximum Axial  | + Bending | Stress Ratios | Maxir            | num Shea  | ar Ratios |             |
|-------------------|----------------|---------|---|----------------|-----------|---------------|------------------|-----------|-----------|-------------|
| Load Combination  | С <sub>D</sub> | СР      |   | Stress Ratio   | Status    | Location      | Stress Ratio     | Statu     | is Lo     | cation      |
| D Only            | 0.900          | 0.635   |   | 0.2509         | PASS      | 0.0 ft        | 0.0              | PAS       | SS        | 9.50 ft     |
| +D+L              | 1.000          | 0.596   |   | 0.2704         | PASS      | 0.0 ft        | 0.0              | PAS       | SS        | 9.50 ft     |
| +D+S              | 1.150          | 0.542   |   | 0.5144         | PASS      | 0.0 ft        | 0.0              | PAS       | SS        | 9.50 ft     |
| +D+0.750L         | 1.250          | 0.511   |   | 0.2455         | PASS      | 0.0 ft        | 0.0              | PAS       | SS        | 9.50 ft     |
| +D+0.750L+0.750S  | 1.150          | 0.542   |   | 0.4644         | PASS      | 0.0 ft        | 0.0              | PAS       | SS        | 9.50 ft     |
| +0.60D            | 1.600          | 0.421   |   | 0.1278         | PASS      | 0.0 ft        | 0.0              | PAS       | SS        | 9.50 ft     |
| Maximum Reactions |                |         |   |                |           |               | Note: Only non   | -zero rea | octions a | are listed. |
|                   | X-X Axis R     | eaction | k | Y-Y Axis React | tion Ax   | ial Reaction  | My - End Moments | k-ft      | Mx - End  | Moments     |
| Load Combination  | @ Base         | @ Top   |   | @ Base @ 1     | Гор       | @ Base        | @ Base @ To      | p (       | Base      | @ Top       |
| D Only            |                |         |   |                |           | 8.986         |                  |           |           |             |

**0.0** : 1

0.0 psi

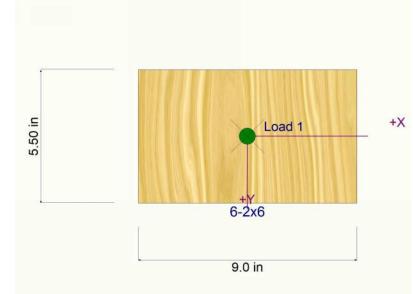
+0.60D

9.50 ft

216.0 psi



Printed: 10 JUN 2022, 8:44AM File: Calcs.ec6


Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

#### DESCRIPTION: 2B5 Post

|                  | X-X Axis Reaction | k | Y-Y Axis Reaction | Axial Reaction | My - End M | oments k-ft | Mx - End Moments |
|------------------|-------------------|---|-------------------|----------------|------------|-------------|------------------|
| Load Combination | @ Base @ Top      |   | @ Base @ Top      | @ Base         | @ Base     | @ Тор       | @ Base @ Top     |
| +D+L             |                   |   |                   | 10.086         |            |             |                  |
| +D+S             |                   |   |                   | 20.086         |            |             |                  |
| +D+0.750L        |                   |   |                   | 9.811          |            |             |                  |
| +D+0.750L+0.750S |                   |   |                   | 18.136         |            |             |                  |
| +0.60D           |                   |   |                   | 5.391          |            |             |                  |
| L Only           |                   |   |                   | 1.100          |            |             |                  |
| S Only           |                   |   |                   | 11.100         |            |             |                  |

| Load Combination | Max. X-X Deflection | Distance | Max. Y-Y Deflection | Distance |
|------------------|---------------------|----------|---------------------|----------|
| D Only           | 0.0000 in           | 0.000 ft | 0.0000 in           | 0.000 ft |
| +D+L             | 0.0000 in           | 0.000 ft | 0.0000 in           | 0.000 ft |
| +D+S             | 0.0000 in           | 0.000 ft | 0.0000 in           | 0.000 ft |
| +D+0.750L        | 0.0000 in           | 0.000 ft | 0.0000 in           | 0.000 ft |
| +D+0.750L+0.750S | 0.0000 in           | 0.000 ft | 0.0000 in           | 0.000 ft |
| +0.60D           | 0.0000 in           | 0.000 ft | 0.0000 in           | 0.000 ft |
| L Only           | 0.0000 in           | 0.000 ft | 0.0000 in           | 0.000 ft |
| S Only           | 0.0000 in           | 0.000 ft | 0.0000 in           | 0.000 ft |
|                  |                     |          |                     |          |

#### Sketches







DESCRIPTION: Steel Beam Post

#### Code References

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : ASCE 7-16

#### **General Information**

| Analysis Method :<br>End Fixities<br>Overall Column He                                                      | Top & Bo                                                                                                               | e Stress Designtion             | gn<br>8 ft                                                              | W                         | ood Section Name<br>ood Grading/Manuf.<br>ood Member Type |            | d Lumber                                                                                                                                                                                                                         |                                                                              |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| ( Used for n<br>Wood Species<br>Wood Grade<br>Fb +<br>Fb -<br>Fc - Prll<br>Fc - Perp<br>E : Modulus of Ela: | on-slender cald<br>Spruce - Pir<br>No. 1/No. 2<br>875.0 psi<br>1,150.0 psi<br>425.0 psi<br>sticity<br>Basic<br>Minimum | ne - Fir<br>Fv<br>Ft<br>Density | 135.0 psi<br>450.0 psi<br>26.220 pcf<br>y-y Bending<br>1,400.0<br>510.0 | E)<br>Axial<br>1,400.0 ks | ace condition for de                                      |            | <ul> <li>Cf or Cv for Tension</li> <li>Cm : Wet Use Factor</li> <li>Ct : Temperature Factor</li> <li>Cfu : Flat Use Factor</li> <li>Kf : Built-up columns</li> <li>Use Cr : Repetitive ?</li> <li>ng) along columns :</li> </ul> | 1.30<br>1.10<br>1.30<br>1.0<br>1.0<br>1.0<br>1.0 <sup>NDS 15.3.2</sup><br>No |
| Applied Loads                                                                                               |                                                                                                                        |                                 |                                                                         |                           | X-X (width) axis<br>Y-Y (depth) axis<br>Service load      | : Unbraced | Length for buckling ABOUT Y-Y Axis<br>Length for buckling ABOUT X-X Axis<br>and Factors will be applied for ca                                                                                                                   | = 8 ft, K = 1.0                                                              |

#### Column self weight included : 60.088 lbs \* Dead Load Factor AXIAL LOADS . . . Steel Beam: Axial Load at 8.0 ft, D = 9.050, L = 13.20, S = 4.80 k

#### DESIGN SUMMARY

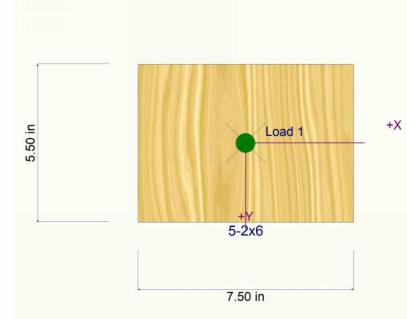
#### Bending & Shear Check Results

| Denuing & Shear Check Results                                |                      |                       |                      |                     |         |
|--------------------------------------------------------------|----------------------|-----------------------|----------------------|---------------------|---------|
| PASS Max. Axial+Bending Stress Ratio                         | <b>0.5944</b> : 1    | Maximum SERVIC        | CE Lateral Load      | Reactions           |         |
| Load Combination                                             | +D+L                 | Top along Y-Y         | 0.0 k                | Bottom along Y-Y    | 0.0 k   |
| Governing NDS Forumla                                        | Comp Only, fc/Fc'    | Top along X-X         | 0.0 k                | Bottom along X-X    | 0.0 k   |
| Location of max.above base<br>At maximum location values are | 0.0 ft               | Maximum SERVICE L     | oad Lateral Deflect  | ions                |         |
|                                                              | 22.240 k             | Along Y-Y             | 0.0 in at            | 0.0 ft above base   |         |
| Applied Axial                                                | 22.310 k             | for load com          | bination : n/a       |                     |         |
| Applied Mx<br>Applied My                                     | 0.0 k-ft<br>0.0 k-ft | Along X-X             | 0.0 in at            | 0.0 ft above base   |         |
| Fc : Allowable                                               | 909.85 psi           | for load com          | nbination : n/a      |                     |         |
|                                                              |                      | Other Factors used to | o calculate allowabl | e stresses          |         |
| PASS Maximum Shear Stress Ratio =                            | <b>0.0</b> : 1       |                       |                      | Bending Compression | Tension |
| Load Combination                                             | +0.60D               |                       |                      |                     |         |
| Location of max.above base                                   | 8.0 ft               |                       |                      |                     |         |
| Applied Design Shear                                         | 0.0 psi              |                       |                      |                     |         |
| Allowable Shear                                              | 216.0 psi            |                       |                      |                     |         |

#### Load Combination Results

|                   | _              | _              | Maximum Axi    | al + Bending | Stress Ratios | Maxim            | um Shear R   | atios           |
|-------------------|----------------|----------------|----------------|--------------|---------------|------------------|--------------|-----------------|
| Load Combination  | C <sub>D</sub> | С <sub>Р</sub> | Stress Ratio   | o Status     | Location      | Stress Ratio     | Status       | Location        |
| D Only            | 0.900          | 0.752          | 0.2579         | PASS         | 0.0 ft        | 0.0              | PASS         | 8.0 ft          |
| +D+L              | 1.000          | 0.719          | 0.5944         | PASS         | 0.0 ft        | 0.0              | PASS         | 8.0 ft          |
| +D+S              | 1.150          | 0.671          | 0.3452         | PASS         | 0.0 ft        | 0.0              | PASS         | 8.0 ft          |
| +D+0.750L         | 1.250          | 0.641          | 0.4546         | PASS         | 0.0 ft        | 0.0              | PASS         | 8.0 ft          |
| +D+0.750L+0.750S  | 1.150          | 0.671          | 0.5612         | PASS         | 0.0 ft        | 0.0              | PASS         | 8.0 ft          |
| +0.60D            | 1.600          | 0.547          | 0.1196         | PASS         | 0.0 ft        | 0.0              | PASS         | 8.0 ft          |
| Maximum Reactions |                |                |                |              |               | Note: Only non-  | zero reactio | ons are listed. |
|                   | X-X Axis R     | eaction        | k Y-Y Axis Rea | action Axi   | al Reaction   | My - End Moments | k-ft Mx -    | End Moments     |
| Load Combination  | @ Base         | @ Top          | @ Base @       | © Тор        | @ Base        | @ Base @ Top     | @ Ba         | nse @ Top       |
| D Only            |                |                |                |              | 9.110         |                  |              |                 |




Printed: 15 JUN 2022, 11:50AM File: Calcs -Updated.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

DESCRIPTION: Steel Beam Post

| Maximum Reactions            |                     |        |                   |                | No       | te: Only nor | n-zero | reactions a | re listed |
|------------------------------|---------------------|--------|-------------------|----------------|----------|--------------|--------|-------------|-----------|
|                              | X-X Axis Reaction   | k      | Y-Y Axis Reaction | Axial Reaction | on My-E  | nd Moments   | k-ft   | Mx - End    | Moments   |
| Load Combination             | @ Base @ Top        |        | @ Base @ Top      | @ Base         | @ Ba     | se @ To      | р      | @ Base      | @ Top     |
| +D+L                         |                     |        |                   | 22.31          | 0        |              |        |             |           |
| +D+S                         |                     |        |                   | 13.91          | 0        |              |        |             |           |
| +D+0.750L                    |                     |        |                   | 19.01          | 0        |              |        |             |           |
| +D+0.750L+0.750S             |                     |        |                   | 22.61          | 0        |              |        |             |           |
| +0.60D                       |                     |        |                   | 5.46           | 6        |              |        |             |           |
| L Only                       |                     |        |                   | 13.20          | 0        |              |        |             |           |
| S Only                       |                     |        |                   | 4.80           | 0        |              |        |             |           |
| Maximum Deflections for Load | d Combinations      |        |                   |                |          |              |        |             |           |
| Load Combination             | Max. X-X Deflection | Distar | ice Max. Y-Y      | ' Deflection   | Distance |              |        |             |           |

|                  | IVIAN. A-A DEHECTION | Distance | IVIAX. 1-1 Defiection | Distance |
|------------------|----------------------|----------|-----------------------|----------|
| D Only           | 0.0000 in            | 0.000 ft | 0.0000 in             | 0.000 ft |
| +D+L             | 0.0000 in            | 0.000 ft | 0.0000 in             | 0.000 ft |
| +D+S             | 0.0000 in            | 0.000 ft | 0.0000 in             | 0.000 ft |
| +D+0.750L        | 0.0000 in            | 0.000 ft | 0.0000 in             | 0.000 ft |
| +D+0.750L+0.750S | 0.0000 in            | 0.000 ft | 0.0000 in             | 0.000 ft |
| +0.60D           | 0.0000 in            | 0.000 ft | 0.0000 in             | 0.000 ft |
| L Only           | 0.0000 in            | 0.000 ft | 0.0000 in             | 0.000 ft |
| S Only           | 0.0000 in            | 0.000 ft | 0.0000 in             | 0.000 ft |
|                  |                      |          |                       |          |







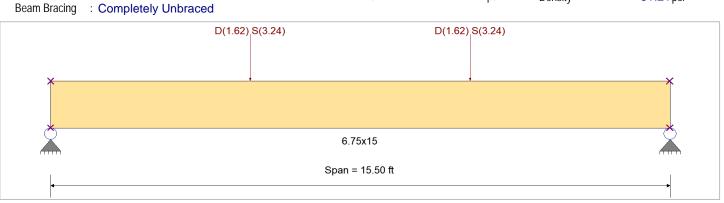


DESCRIPTION: Slider Beam

Load Combination Set : ASCE 7-16

: 24F - V8

**CODE REFERENCES** 


**Material Properties** 

Wood Species : DF/DF

Wood Grade

Load Combination ASCE 7-16

#### Printed: 6 MAY 2022, 2:25PM File: Calcs.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 E : Modulus of Elasticity Analysis Method : Allowable Stress Design 2400 psi Fb + Fb -2400 psi Ebend- xx 1800 ksi Fc - Prll 1650 psi Eminbend - xx 950 ksi Fc - Perp 650 psi Ebend- yy 1600ksi 265 psi 850 ksi F٧ Eminbend - yy Ft 1100 psi 31.21 pcf Density D(1.62) S(3.24)



#### **Applied Loads**

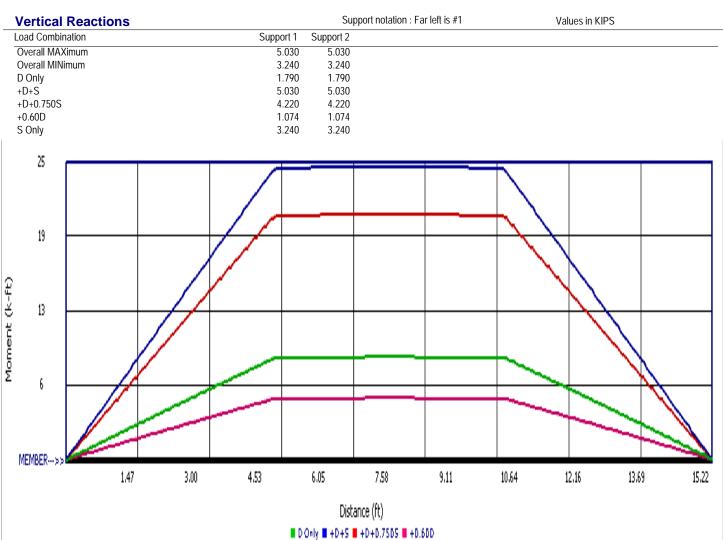
Service loads entered. Load Factors will be applied for calculations.

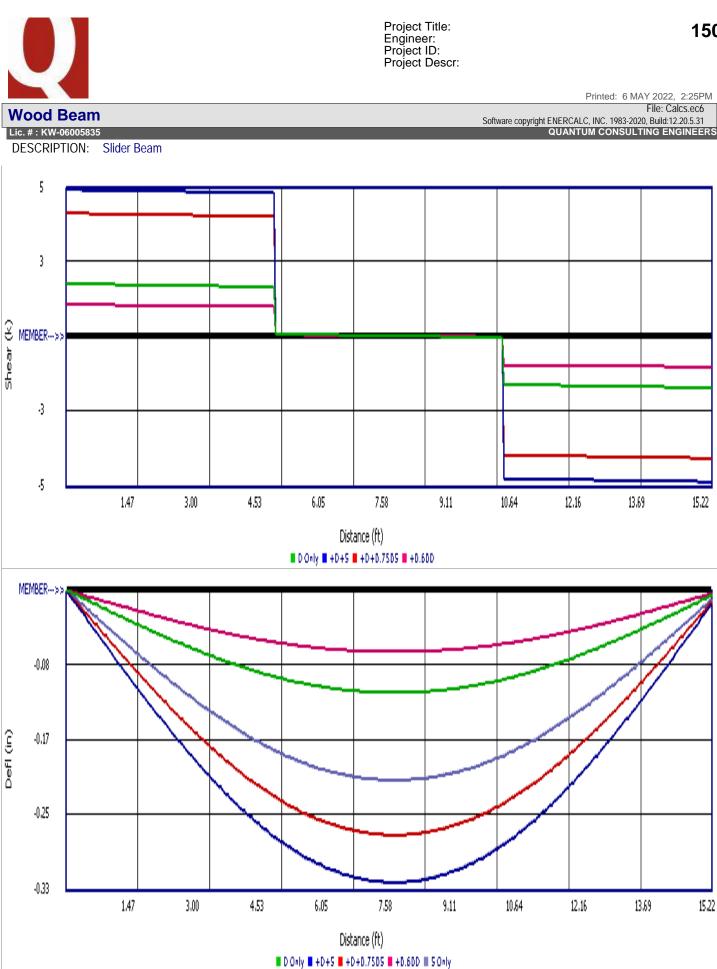
Beam self weight calculated and added to loads Point Load : D = 1.620, S = 3.240 k @ 5.0 ft, (Roof Beam) Point Load : D = 1.620, S = 3.240 k @ 10.50 ft, (Roof Beam)

#### DESIGN SUMMARY

| DESIGN SUMMARY                  |       |                  |                             |   | Design OK        |
|---------------------------------|-------|------------------|-----------------------------|---|------------------|
| Maximum Bending Stress Ratio    | =     | 0.437: 1 Ma      | ximum Shear Stress Ratio    | = | <b>0.243</b> : 1 |
| Section used for this span      |       | 6.75x15          | Section used for this span  |   | 6.75x15          |
|                                 | =     | 1,183.24psi      |                             | = | 74.11 psi        |
|                                 | =     | 2,706.74psi      |                             | = | 304.75 psi       |
| Load Combination                |       | +D+S             | Load Combination            |   | +D+S             |
| Location of maximum on span     | =     | 7.750ft          | Location of maximum on span | = | 14.255 ft        |
| Span # where maximum occurs     | =     | Span # 1         | Span # where maximum occurs | = | Span # 1         |
| Maximum Deflection              |       |                  |                             |   |                  |
| Max Downward Transient Defle    | ction | 0.213 in Ratio = | 872>=360                    |   |                  |
| Max Upward Transient Deflection | n     | 0.000 in Ratio = | <mark>0</mark> <360         |   |                  |
| Max Downward Total Deflection   |       | 0.328 in Ratio = | 567 >=240                   |   |                  |
| Max Upward Total Deflection     |       | 0.000 in Ratio = | <mark>0</mark> <240         |   |                  |

| Load Combination     |        | Max Stress | s Ratios |          |                  |          |           |      |         |                | Mor   | ment Values |          |        | Shear Va   | lues   |
|----------------------|--------|------------|----------|----------|------------------|----------|-----------|------|---------|----------------|-------|-------------|----------|--------|------------|--------|
| Segment Length       | Span # | М          | V        | Сd       | C <sub>F/V</sub> | Сi       | Cr        | Сm   | C t     | C <sup>L</sup> | М     | fb          | F'b      | V      | fv         | F'v    |
| D Only               |        |            |          |          |                  |          |           |      |         |                |       |             | 0.00     | 0.00   | 0.00       | 0.00   |
| Length = 15.50 ft    | 1      | 0.196      | 0.109    | 0.90     | 0.981            | 1.00     | 1.00      | 1.00 | 1.00    | 0.99           | 8.76  | 415.24      | 2118.31  | 1.76   | 26.11      | 238.50 |
| +D+S                 |        |            |          |          | 0.981            | 1.00     | 1.00      | 1.00 | 1.00    | 0.99           |       |             | 0.00     | 0.00   | 0.00       | 0.00   |
| Length = 15.50 ft    | 1      | 0.437      | 0.243    | 1.15     | 0.981            | 1.00     | 1.00      | 1.00 | 1.00    | 0.98           | 24.96 | 1,183.24    | 2706.74  | 5.00   | 74.11      | 304.75 |
| +D+0.750S            |        |            |          |          | 0.981            | 1.00     | 1.00      | 1.00 | 1.00    | 0.98           |       |             | 0.00     | 0.00   | 0.00       | 0.00   |
| Length = 15.50 ft    | 1      | 0.366      | 0.204    | 1.15     | 0.981            | 1.00     | 1.00      | 1.00 | 1.00    | 0.98           | 20.91 | 991.24      | 2706.74  | 4.19   | 62.11      | 304.75 |
| +0.60D               |        |            |          |          | 0.981            | 1.00     | 1.00      | 1.00 | 1.00    | 0.98           |       |             | 0.00     | 0.00   | 0.00       | 0.00   |
| Length = 15.50 ft    | 1      | 0.067      | 0.037    | 1.60     | 0.981            | 1.00     | 1.00      | 1.00 | 1.00    | 0.97           | 5.26  | 249.15      | 3728.21  | 1.06   | 15.67      | 424.00 |
| <b>Overall Maxir</b> | num De | flectio    | ns       |          |                  |          |           |      |         |                |       |             |          |        |            |        |
| Load Combination     |        | S          | pan      | Max. "-' | ' Defl           | Location | n in Span |      | Load Co | mbinatio       | n     |             | Max. "+" | Defl L | ocation in | Span   |


| Edda Gerribination | Opun | Max. Den | Eocation in Span | Edda Gombination | Max. Don | Ebeduori in Opun |
|--------------------|------|----------|------------------|------------------|----------|------------------|
| +D+S               | 1    | 0.3280   | 7.807            |                  | 0.0000   | 0.000            |




Printed: 6 MAY 2022, 2:25PM File: Calcs.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

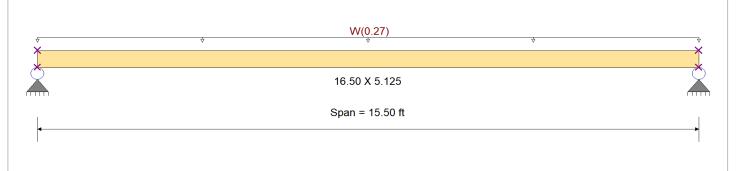
DESCRIPTION: Slider Beam







Printed: 6 MAY 2022, 12:41PM File: Calcs.ec6


Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

DESCRIPTION: Slider Beam Wind

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

#### **CODE REFERENCES**

| Material Properties                       |           |                |                        |                     |
|-------------------------------------------|-----------|----------------|------------------------|---------------------|
| Analysis Method : Allowable Stress Design | Fb +      | 2400 psi       | E : Modulus of Elastic | city                |
| Load Combination ASCE 7-16                | Fb -      | 2400 psi       | Ebend- xx              | 1800ksi             |
|                                           | Fc - Prll | 1650 psi       | Eminbend - xx          | <b>950</b> ksi      |
| Wood Species : DF/DF                      | Fc - Perp | 650 psi        | Ebend- yy              | 1600ks              |
| Wood Grade : 24F - V8                     | Fv '      | <b>265</b> psi | Eminbend - yy          | <mark>850</mark> ks |
|                                           | Ft        | 1100 psi       | Density                | 31.21 pc            |
| Beam Bracing : Completely Unbraced        |           | •              |                        | 1.                  |

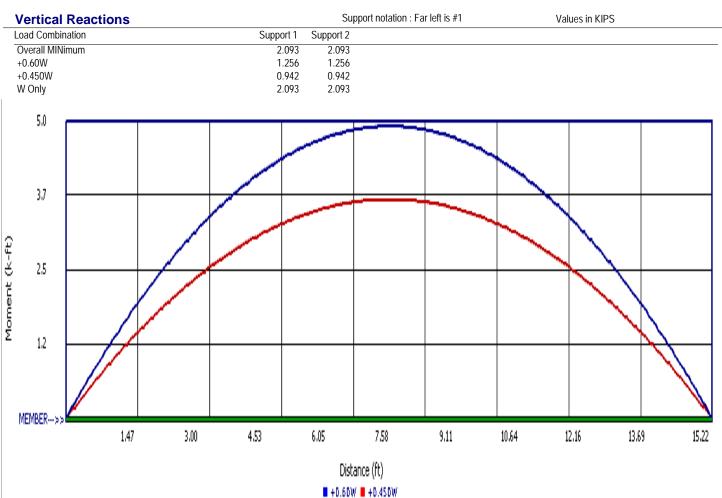


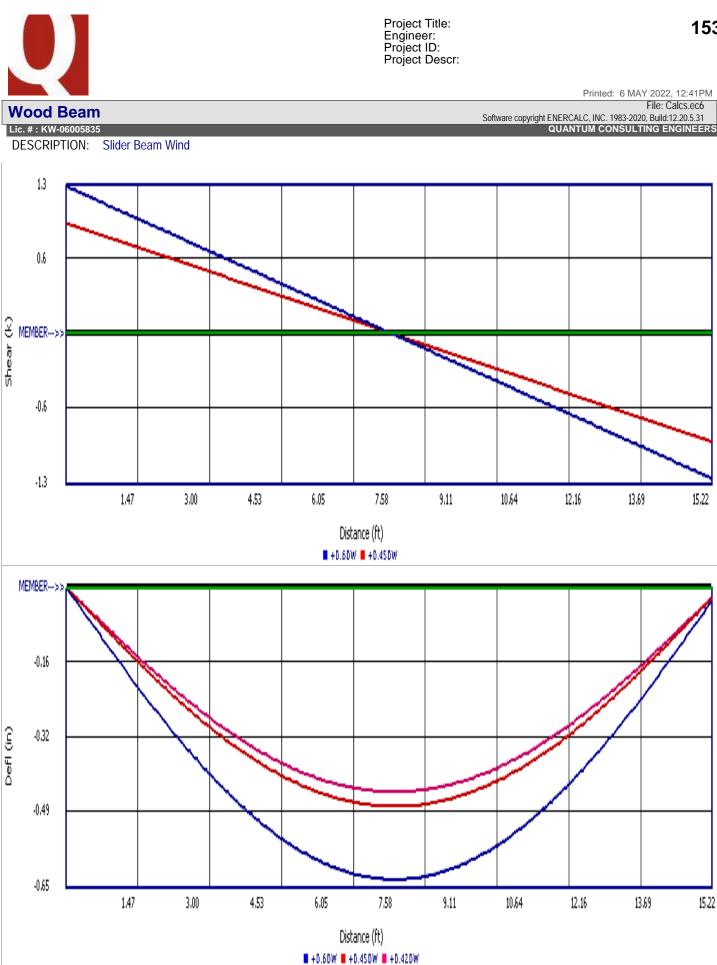
| Applied Loads | Service loads entered. Load Factors will be applied for calculations. |
|---------------|-----------------------------------------------------------------------|
|               |                                                                       |

Uniform Load : W = 0.030 ksf, Tributary Width = 9.0 ft, (Wind)

| DESIGN SUMMARY                  |   |                  |                             |   | Design OK        |
|---------------------------------|---|------------------|-----------------------------|---|------------------|
| Maximum Bending Stress Ratio    | = | <b>0.211</b> : 1 | Maximum Shear Stress Ratio  | = | <b>0.050</b> : 1 |
| Section used for this span      |   | 16.50 X 5.125    | Section used for this span  |   | 16.50 X 5.125    |
|                                 | = | 808.26psi        |                             | = | 21.13 psi        |
|                                 | = | 3,834.33psi      |                             | = | 424.00 psi       |
| Load Combination                |   | +0.60W           | Load Combination            |   | +0.60W           |
| Location of maximum on span     | = | 7.750ft          | Location of maximum on span | = | 15.104 ft        |
| Span # where maximum occurs     | = | Span # 1         | Span # where maximum occurs | = | Span # 1         |
| Maximum Deflection              |   |                  |                             |   |                  |
| Max Downward Transient Deflect  |   | 0.445 in Rati    |                             |   |                  |
| Max Upward Transient Deflection |   | 0.000 in Rati    | o = 0 < 360                 |   |                  |
| Max Downward Total Deflection   |   | 0.635 in Rati    | o = 292>=240                |   |                  |
| Max Upward Total Deflection     |   | 0.000 in Rati    | o = 0<240                   |   |                  |

| Load Combination     |        | Max Stress | s Ratios |          |                  |          |           |          |            |                | Mom  | ent Values |             |      | Shear Va    | lues   |
|----------------------|--------|------------|----------|----------|------------------|----------|-----------|----------|------------|----------------|------|------------|-------------|------|-------------|--------|
| Segment Length       | Span # | М          | V        | Сd       | C <sub>F/V</sub> | Сi       | Cr        | Сm       | C t        | C <sup>L</sup> | М    | fb         | F'b         | V    | fv          | F'v    |
|                      |        |            |          |          |                  |          |           |          |            |                |      |            | 0.00        | 0.00 | 0.00        | 0.00   |
| Length = 15.50 ft    | 1      |            |          | 0.90     | 0.999            | 1.00     | 1.00      | 1.00     | 1.00       | 1.00           |      |            | 2156.81     | 0.00 | 0.00        | 238.50 |
| +0.60W               |        |            |          |          | 0.999            | 1.00     | 1.00      | 1.00     | 1.00       | 1.00           |      |            | 0.00        | 0.00 | 0.00        | 0.00   |
| Length = 15.50 ft    | 1      | 0.211      | 0.050    | 1.60     | 0.999            | 1.00     | 1.00      | 1.00     | 1.00       | 1.00           | 4.87 | 808.26     | 3834.33     | 1.19 | 21.13       | 424.00 |
| +0.450W              |        |            |          |          | 0.999            | 1.00     | 1.00      | 1.00     | 1.00       | 1.00           |      |            | 0.00        | 0.00 | 0.00        | 0.00   |
| Length = 15.50 ft    | 1      | 0.158      | 0.037    | 1.60     | 0.999            | 1.00     | 1.00      | 1.00     | 1.00       | 1.00           | 3.65 | 606.19     | 3834.33     | 0.89 | 15.85       | 424.00 |
| <b>Overall Maxin</b> | num De | flectio    | ns       |          |                  |          |           |          |            |                |      |            |             |      |             |        |
| Load Combination     |        | S          | pan      | Max. "-' | Defl             | Location | n in Spar | ı        | Load Co    | ombinatior     | ı    |            | Max. "+"    | Defl | Location in | Span   |
| +0.60W               |        |            | 1        | 0.6      | 5352             |          | 7.807     |          |            |                |      |            | 0.0         | 000  | 0.          | 000    |
| Vertical Reac        | tions  |            |          |          |                  |          | Sup       | port not | tation : F | ar left is #   | #1   |            | Values in K | IPS  |             |        |
| Load Combination     |        |            |          |          | Suppor           | t1 Su    | pport 2   |          |            |                |      |            |             |      |             |        |
| Overall MAXimum      |        |            |          |          | 2.0              | 193      | 2.093     |          |            |                |      |            |             |      |             |        |





Printed: 6 MAY 2022, 12:41PM File: Calcs.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

Lic. # : KW-06005835

#### DESCRIPTION: Slider Beam Wind







Printed: 10 JUN 2022, 7:15AM File: Calcs.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

DESCRIPTION: Out of Plane Grid C

#### **CODE REFERENCES**

| Fb +      | 2,900.0 psi                          | E : Modulus of Elast                                                                                                                  | ticity                                                                                                                                                                                                          |
|-----------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fb -      | 2,900.0 psi                          | Ebend- xx                                                                                                                             | 2,000.0ksi                                                                                                                                                                                                      |
| Fc - Prll | 2,900.0 psi                          | Eminbend - xx                                                                                                                         | 1,016.54ksi                                                                                                                                                                                                     |
| Fc - Perp | 625.0 psi                            |                                                                                                                                       |                                                                                                                                                                                                                 |
| Fv        | 290.0 psi                            |                                                                                                                                       |                                                                                                                                                                                                                 |
| Ft        | 2,025.0 psi                          | Density                                                                                                                               | 45.070 pcf                                                                                                                                                                                                      |
|           |                                      | ,                                                                                                                                     |                                                                                                                                                                                                                 |
|           | Fb -<br>Fc - Prll<br>Fc - Perp<br>Fv | Fb -         2,900.0 psi           Fc - Prll         2,900.0 psi           Fc - Perp         625.0 psi           Fv         290.0 psi | Fb -         2,900.0 psi         Ebend- xx           Fc - Prll         2,900.0 psi         Eminbend - xx           Fc - Perp         625.0 psi         Fv           Fv         2900.0 psi         Eminbend - xx |



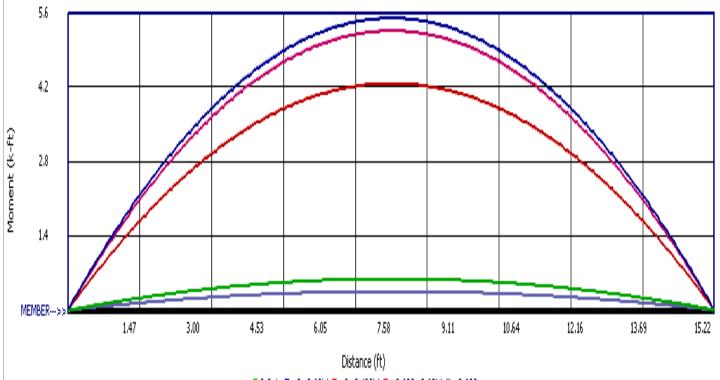
#### **Applied Loads** Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loads Uniform Load : W = 0.030 ksf, Tributary Width = 9.0 ft

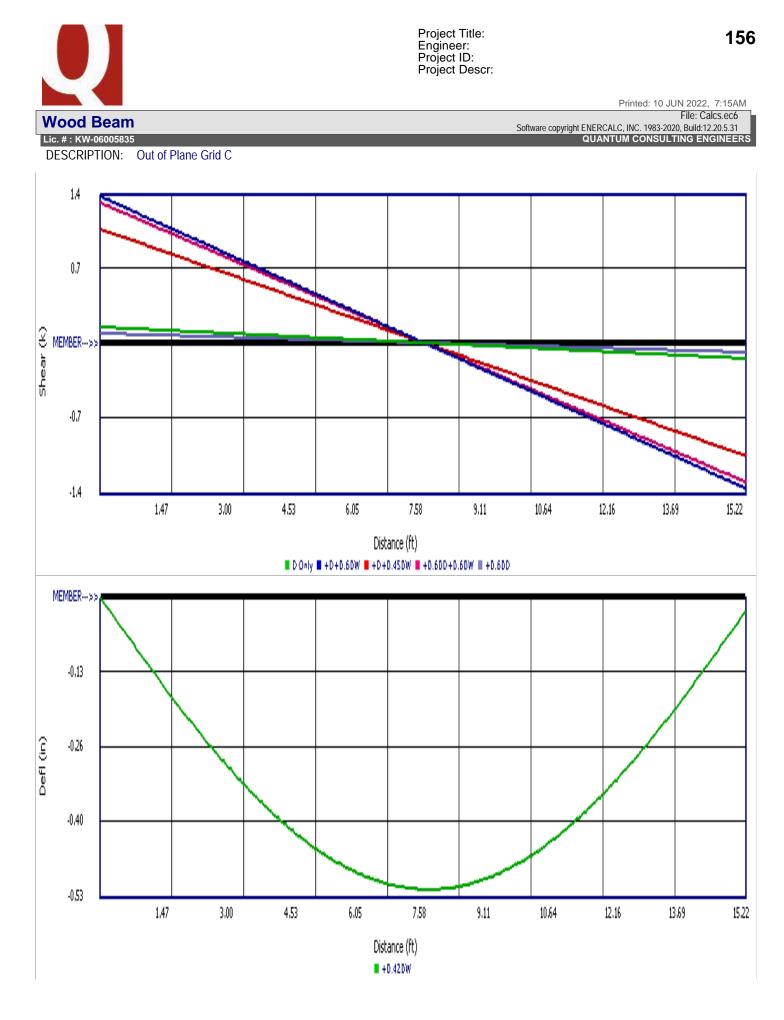
#### DESIGN SUMMARY

| DESIGN SUMMARY                 |       |                |                             |   | Design OK        |
|--------------------------------|-------|----------------|-----------------------------|---|------------------|
| Maximum Bending Stress Ratio   | =     | 0.258 1        | Maximum Shear Stress Ratio  | = | <b>0.069</b> : 1 |
| Section used for this span     |       | 11.875 X 5.250 | Section used for this span  |   | 11.875 X 5.250   |
|                                | =     | 1,199.11psi    | · · · · · ·                 | = | 32.12 psi        |
|                                | =     | 4,640.00psi    |                             | = | 464.00 psi       |
| Load Combination               |       | +D+0.60W       | Load Combination            |   | +D+0.60W         |
| Location of maximum on span    | =     | 7.750ft        | Location of maximum on span | = | 15.104 ft        |
| Span # where maximum occurs    | =     | Span # 1       | Span # where maximum occurs | = | Span # 1         |
| Maximum Deflection             |       |                |                             |   |                  |
| Max Downward Transient Deflect | ction | 0.517 in Ratio | o = 359 >=240               |   |                  |
| Max Upward Transient Deflectio | n     | 0.000 in Ratio | o = 0<240                   |   |                  |
| Max Downward Total Deflection  |       | 0.000 in Ratio | o = 0 < 240                 |   |                  |
| Max Upward Total Deflection    |       | 0.000 in Ratio |                             |   |                  |

| Load Combination  |        | Max Stress | s Ratios |      |                  |      |      |      |      |      | Mor  | nent Values |         |      | Shear Va | lues   |
|-------------------|--------|------------|----------|------|------------------|------|------|------|------|------|------|-------------|---------|------|----------|--------|
| Segment Length    | Span # | М          | V        | Сd   | C <sub>F/V</sub> | Сi   | Cr   | Сm   | C t  | CL   | М    | fb          | F'b     | V    | fv       | F'v    |
| D Only            |        |            |          |      |                  |      |      |      |      |      |      |             | 0.00    | 0.00 | 0.00     | 0.00   |
| Length = 15.50 ft | 1      | 0.049      | 0.013    | 0.90 | 1.000            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.59 | 128.91      | 2610.00 | 0.14 | 3.45     | 261.00 |
| +D+0.60W          |        |            |          |      | 1.000            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |      |             | 0.00    | 0.00 | 0.00     | 0.00   |
| Length = 15.50 ft | 1      | 0.258      | 0.069    | 1.60 | 1.000            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 5.45 | 1,199.11    | 4640.00 | 1.33 | 32.12    | 464.00 |
| +D+0.450W         |        |            |          |      | 1.000            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |      |             | 0.00    | 0.00 | 0.00     | 0.00   |
| Length = 15.50 ft | 1      | 0.201      | 0.054    | 1.60 | 1.000            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 4.23 | 931.56      | 4640.00 | 1.04 | 24.95    | 464.00 |
| +0.60D+0.60W      |        |            |          |      | 1.000            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |      |             | 0.00    | 0.00 | 0.00     | 0.00   |
| Length = 15.50 ft | 1      | 0.247      | 0.066    | 1.60 | 1.000            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 5.22 | 1,147.55    | 4640.00 | 1.28 | 30.74    | 464.00 |
| +0.60D            |        |            |          |      | 1.000            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |      |             | 0.00    | 0.00 | 0.00     | 0.00   |
| Length = 15.50 ft | 1      | 0.017      | 0.004    | 1.60 | 1.000            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.35 | 77.34       | 4640.00 | 0.09 | 2.07     | 464.00 |




Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS


DESCRIPTION: Out of Plane Grid C

#### **Overall Maximum Deflections**

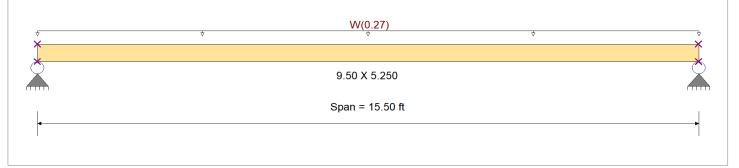
| Load Combination   | Span | Max. "-" Defl | Location in Span | Load Combination             | Max. "+" Defl  | Location in Span |
|--------------------|------|---------------|------------------|------------------------------|----------------|------------------|
| +0.420W            | 1    | 0.5172        | 7.807            |                              | 0.0000         | 0.000            |
| Vertical Reactions |      |               | Suppo            | rt notation : Far left is #1 | Values in KIPS |                  |
| Load Combination   |      | Suppor        | t 1 Support 2    |                              |                |                  |
| Overall MAXimum    |      | 2.0           | 93 2.093         |                              |                |                  |
| Overall MINimum    |      | 2.0           | 93 2.093         |                              |                |                  |
| D Only             |      | 0.1           | 51 0.151         |                              |                |                  |
| +D+0.60W           |      | 1.4           | 07 1.407         |                              |                |                  |
| +D+0.450W          |      | 1.0           | 93 1.093         |                              |                |                  |
| +0.60D+0.60W       |      | 1.3           | 46 1.346         |                              |                |                  |
| +0.60D             |      | 0.0           | 91 0.091         |                              |                |                  |
| W Only             |      | 2.0           | 93 2.093         |                              |                |                  |



■ D Only ■ +D+0.60W ■ +D+0.450W ■ +0.60D+0.60W ■ +0.60D






Printed: 10 JUN 2022, 7:14AM File: Calcs.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31

QUANTUM CONSULTING ENGINEERS

DESCRIPTION: Out of Plane Grid I

#### **CODE REFERENCES**

| Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16<br>Load Combination Set : ASCE 7-16 |           |             |                     |              |
|----------------------------------------------------------------------------------------------|-----------|-------------|---------------------|--------------|
| Material Properties                                                                          |           |             |                     |              |
| Analysis Method : Allowable Stress Design                                                    | Fb +      | 2,900.0 psi | E : Modulus of Elas | ticity       |
| Load Combination ASCE 7-16                                                                   | Fb -      | 2,900.0 psi | Ebend- xx           | 2,000.0ksi   |
|                                                                                              | Fc - Prll | 2,900.0 psi | Eminbend - xx       | 1,016.54 ksi |
| Wood Species : Trus Joist                                                                    | Fc - Perp | 625.0 psi   |                     |              |
| Wood Grade : Parallam PSL 2.0E                                                               | Fv        | 290.0 psi   |                     |              |
|                                                                                              | Ft        | 2,025.0 psi | Density             | 45.070 pcf   |
| Beam Bracing : Completely Unbraced                                                           |           |             |                     |              |
|                                                                                              |           |             |                     |              |



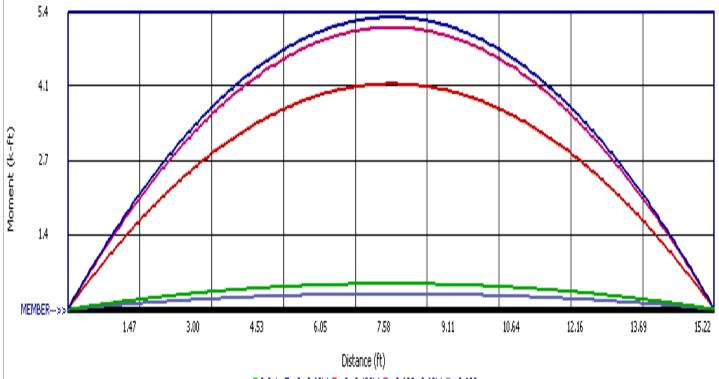
#### **Applied Loads** Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loads Uniform Load : W = 0.030 ksf, Tributary Width = 9.0 ft

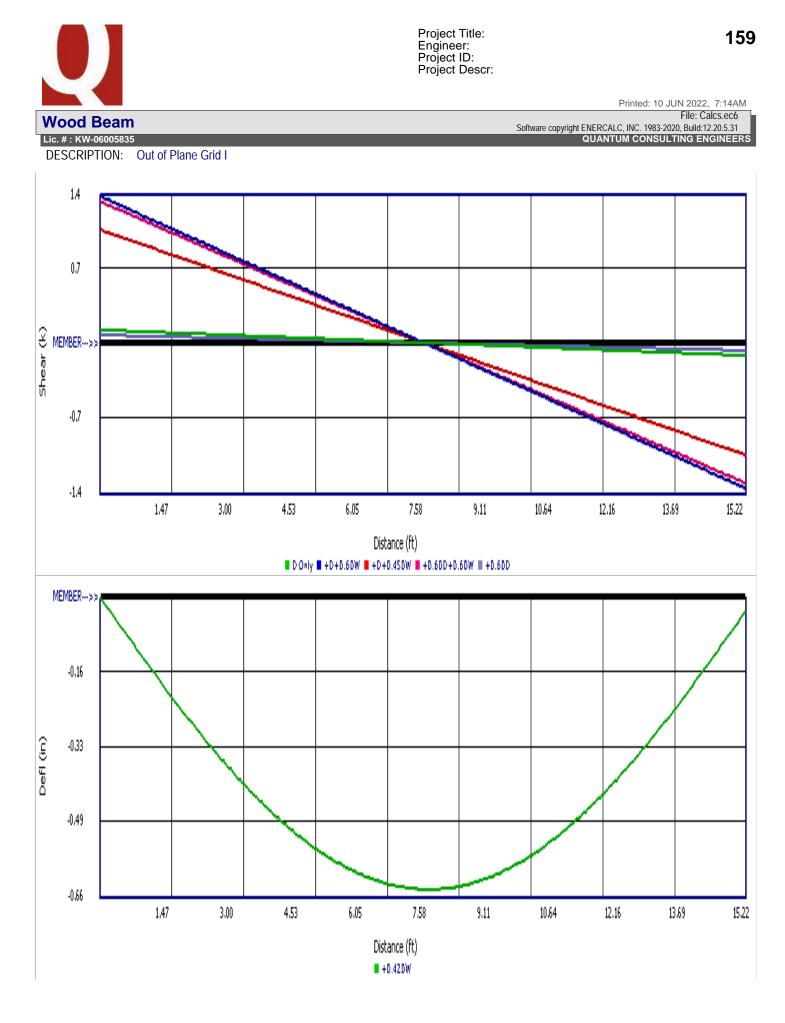
#### 

| DESIGN SUMMARY                  |      |                |                             |   | Design OK        |
|---------------------------------|------|----------------|-----------------------------|---|------------------|
| Maximum Bending Stress Ratio    | =    | 0.316 1        | Maximum Shear Stress Ratio  | = | <b>0.085</b> : 1 |
| Section used for this span      |      | 9.50 X 5.250   | Section used for this span  |   | 9.50 X 5.250     |
|                                 | =    | 1,466.67psi    |                             | = | 39.28 psi        |
|                                 | =    | 4,640.00psi    |                             | = | 464.00 psi       |
| Load Combination                |      | +D+0.60W       | Load Combination            |   | +D+0.60W         |
| Location of maximum on span     | =    | 7.750ft        | Location of maximum on span | = | 15.104 ft        |
| Span # where maximum occurs     | =    | Span # 1       | Span # where maximum occurs | = | Span # 1         |
| Maximum Deflection              |      |                |                             |   |                  |
| Max Downward Transient Deflect  | tion | 0.647 in Ratio | = 287>=240                  |   |                  |
| Max Upward Transient Deflection | ۱    | 0.000 in Ratio | = <u>0</u> <240             |   |                  |
| Max Downward Total Deflection   |      | 0.000 in Ratio | = <b>0</b> <240             |   |                  |
| Max Upward Total Deflection     |      | 0.000 in Ratio | = <b>0</b> <240             |   |                  |
| L                               |      |                |                             |   |                  |

| Load Combination  |        | Max Stress | s Ratios |      |                  |      |      |      |      |      | Mor  | ment Values |         |      | Shear Va | lues   |
|-------------------|--------|------------|----------|------|------------------|------|------|------|------|------|------|-------------|---------|------|----------|--------|
| Segment Length    | Span # | М          | V        | Сd   | C <sub>F/V</sub> | Сi   | Cr   | Сm   | C t  | CL   | М    | fb          | F'b     | V    | fv       | F'v    |
| D Only            |        |            |          |      |                  |      |      |      |      |      |      |             | 0.00    | 0.00 | 0.00     | 0.00   |
| Length = 15.50 ft | 1      | 0.049      | 0.013    | 0.90 | 1.000            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.47 | 128.91      | 2610.00 | 0.11 | 3.45     | 261.00 |
| +D+0.60W          |        |            |          |      | 1.000            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |      |             | 0.00    | 0.00 | 0.00     | 0.00   |
| Length = 15.50 ft | 1      | 0.316      | 0.085    | 1.60 | 1.000            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 5.33 | 1,466.67    | 4640.00 | 1.31 | 39.28    | 464.00 |
| +D+0.450W         |        |            |          |      | 1.000            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |      |             | 0.00    | 0.00 | 0.00     | 0.00   |
| Length = 15.50 ft | 1      | 0.244      | 0.065    | 1.60 | 1.000            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 4.12 | 1,132.23    | 4640.00 | 1.01 | 30.33    | 464.00 |
| +0.60D+0.60W      |        |            |          |      | 1.000            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |      |             | 0.00    | 0.00 | 0.00     | 0.00   |
| Length = 15.50 ft | 1      | 0.305      | 0.082    | 1.60 | 1.000            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 5.15 | 1,415.10    | 4640.00 | 1.26 | 37.90    | 464.00 |
| +0.60D            |        |            |          |      | 1.000            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |      |             | 0.00    | 0.00 | 0.00     | 0.00   |
| Length = 15.50 ft | 1      | 0.017      | 0.004    | 1.60 | 1.000            | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.28 | 77.34       | 4640.00 | 0.07 | 2.07     | 464.00 |




Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS


DESCRIPTION: Out of Plane Grid I

#### **Overall Maximum Deflections**

| Load Combination   | Span | Max. "-" Defl | Location in Span | Load Combination             | Max. "+" Defl  | Location in Span |
|--------------------|------|---------------|------------------|------------------------------|----------------|------------------|
| +0.420W            | 1    | 0.6465        | 7.807            |                              | 0.0000         | 0.000            |
| Vertical Reactions |      |               | Suppo            | rt notation : Far left is #1 | Values in KIPS |                  |
| Load Combination   |      | Suppor        | t 1 Support 2    |                              |                |                  |
| Overall MAXimum    |      | 2.0           | 093 2.093        |                              |                |                  |
| Overall MINimum    |      | 2.0           | 093 2.093        |                              |                |                  |
| D Only             |      | 0.1           | 0.121            |                              |                |                  |
| +D+0.60W           |      | 1.3           | 376 1.376        |                              |                |                  |
| +D+0.450W          |      | 1.(           | 063 1.063        |                              |                |                  |
| +0.60D+0.60W       |      | 1.3           | 328 1.328        |                              |                |                  |
| +0.60D             |      | 0.0           | 0.073 0.073      |                              |                |                  |
| W Only             |      | 2.0           | 093 2.093        |                              |                |                  |



■ D Only ■ +D+0.60W ■ +D+0.450W ■ +0.60D+0.60W ■ +0.60D





Fy : Steel Yield :

E: Modulus :

Printed: 25 JUL 2022, 10:17AM File: Calcs -Updated.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

50.0 ksi

29,000.0 ksi

DESCRIPTION: 2B12: Slider Beam

#### **CODE REFERENCES**

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16

#### **Material Properties**

Analysis Method : Allowable Strength Design Completely Unbraced Beam Bracing : Major Axis Bending Bending Axis :



#### **Applied Loads**

Beam self weight calculated and added to loading Load(s) for Span Number 1 Point Load : D = 1.670, S = 2.620 k @ 5.170 ft, (Roof Beam)

Point Load : D = 1.670, S = 3.530 k @ 10.50 ft, (Roof Beam)

| DESIGN SUMMARY                                                                                                                                             |                                                                  |                                 | Design OK   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------|-------------|
| Maximum Bending Stress Ratio =                                                                                                                             | 0.243 : 1                                                        | Maximum Shear Stress Ratio =    | 0.037 : 1   |
| Section used for this span                                                                                                                                 | HSS10x6x1/2                                                      | Section used for this span      | HSS10x6x1/2 |
| Ma : Applied                                                                                                                                               | 26.046 k-ft                                                      | Va : Applied                    | 5.331 k     |
| Mn / Omega : Allowable                                                                                                                                     | 107.285 k-ft                                                     | Vn/Omega : Allowable            | 143.760 k   |
| Load Combination                                                                                                                                           | +D+S                                                             | Load Combination                | +D+S        |
| Location of maximum on span                                                                                                                                | 10.496ft                                                         | Location of maximum on span     | 15.500 ft   |
| Span # where maximum occurs                                                                                                                                | Span # 1                                                         | Span # where maximum occurs     | Span # 1    |
| Maximum Deflection<br>Max Downward Transient Deflection<br>Max Upward Transient Deflection<br>Max Downward Total Deflection<br>Max Upward Total Deflection | 0.140 in Rati<br>0.000 in Rati<br>0.230 in Rati<br>0.000 in Rati | io = 0 < 360<br>io = 809 >= 180 |             |

| Load Combination      |         | Max Stres | ss Ratios     |             | 0       | Summary of M   | Ioment Valu | les       |      |          | Summ       | hary of Sh | ear Values |
|-----------------------|---------|-----------|---------------|-------------|---------|----------------|-------------|-----------|------|----------|------------|------------|------------|
| Segment Length        | Span #  | М         | V             | Mmax +      | Mmax -  | Ma Max         | Mnx         | Mnx/Omega | Cb   | Rm       | Va Max     | Vnx        | Vnx/Omega  |
| D Only                |         |           |               |             |         |                |             |           |      |          |            |            |            |
| Dsgn. L = 15.46 ft    | 1       | 0.093     | 0.014         | 9.96        |         | 9.96           | 179.17      | 107.29    | 1.13 | 1.00     | 2.06       | 240.08     | 143.76     |
| Dsgn. L = 0.04 ft     | 1       | 0.001     | 0.014         | 0.09        |         | 0.09           | 179.17      | 107.29    | 1.00 | 1.00     | 2.07       | 240.08     | 143.76     |
| +D+S                  |         |           |               |             |         |                |             |           |      |          |            |            |            |
| Dsgn. L = 15.46 ft    | 1       | 0.243     | 0.037         | 26.05       |         | 26.05          | 179.17      | 107.29    | 1.14 | 1.00     | 5.33       | 240.08     | 143.76     |
| Dsgn. L = 0.04 ft     | 1       | 0.002     | 0.037         | 0.24        |         | 0.24           | 179.17      | 107.29    | 1.00 | 1.00     | 5.33       | 240.08     | 143.76     |
| +D+0.750S             |         |           |               |             |         |                |             |           |      |          |            |            |            |
| Dsgn. L = 15.46 ft    | 1       | 0.205     | 0.031         | 21.96       |         | 21.96          | 179.17      | 107.29    | 1.14 | 1.00     | 4.51       | 240.08     | 143.76     |
| Dsgn. L = 0.04 ft     | 1       | 0.002     | 0.031         | 0.20        |         | 0.20           | 179.17      | 107.29    | 1.00 | 1.00     | 4.51       | 240.08     | 143.76     |
| +0.60D                |         |           |               |             |         |                |             |           |      |          |            |            |            |
| Dsgn. L = 15.46 ft    | 1       | 0.056     | 0.009         | 5.98        |         | 5.98           | 179.17      | 107.29    | 1.13 | 1.00     | 1.24       | 240.08     | 143.76     |
| Dsgn. L = 0.04 ft     | 1       | 0.001     | 0.009         | 0.05        |         | 0.05           | 179.17      | 107.29    | 1.00 | 1.00     | 1.24       | 240.08     | 143.76     |
| <b>Overall Maximu</b> | n Defle | ctions    |               |             |         |                |             |           |      |          |            |            |            |
| Load Combination      |         | Span      | Max. "-" Defl | Location in | n Span  | Load Com       | bination    |           |      | Мах      | . "+" Defl | Location   | n in Span  |
| +D+S                  |         | 1         | 0.2298        | 7.          | 839     |                |             |           |      |          | 0.0000     |            | 0.000      |
| Vertical Reaction     | ns      |           |               |             | Support | notation : Far | left is #1  |           |      | Values i | n KIPS     |            |            |
| Load Combination      |         | Support 1 | Support 2     |             |         |                |             |           |      |          |            |            |            |
| Overall MAXimum       |         | 4.914     | 5.331         |             |         |                |             |           |      |          |            |            |            |



#### Project Title: Engineer: Project ID: Project Descr:

## 161

#### Printed: 25 JUL 2022, 10:17AM File: Calcs -Updated.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

DESCRIPTION: 2B12: Slider Beam

| Vertical Reactions |           |           | Support notation : Far left is #1 | Values in KIPS |
|--------------------|-----------|-----------|-----------------------------------|----------------|
| Load Combination   | Support 1 | Support 2 |                                   |                |
| Overall MINimum    | 1.218     | 1.240     |                                   |                |
| D Only             | 2.029     | 2.066     |                                   |                |
| +D+S               | 4.914     | 5.331     |                                   |                |
| +D+0.750S          | 4.193     | 4.515     |                                   |                |
| +0.60D             | 1.218     | 1.240     |                                   |                |
| S Only             | 2.885     | 3.265     |                                   |                |



DESCRIPTION: Steel Beam Grid 11 (Gravity)

#### **CODE REFERENCES**

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16

#### **Material Properties**

| Beam Bracing : | <ul> <li>Allowable Strength Design</li> <li>Beam is Fully Braced against lateral-torsional buckling</li> <li>Major Axis Bending</li> </ul> | Fy : Steel Yield :<br>E: Modulus : | 50.0 ksi<br>29,000.0 ksi |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------|--|
| \$             | D(0.216)                                                                                                                                   | \$                                 | \$                       |  |



#### **Applied Loads**

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loading Uniform Load : D = 0.0120, L = 0.040 ksf, Tributary Width = 16.0 ft, (Floor Load)

Uniform Load : D = 0.0120, L = 0.040 ksf, Tributary Width = 15.0 ft, (Second Floor)

Uniform Load : D = 0.0160, S = 0.030 ksf, Tributary Width = 14.0 ft, (Roof Load)

Uniform Load : D = 0.0120 ksf, Tributary Width = 18.0 ft, (Wall Load)

#### **DESIGN SUMMARY**

| DESIGN SUMMARY                                                                                                                                             |                                                                      |                                   | Design OK        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------|------------------|
| Maximum Bending Stress Ratio =                                                                                                                             | <b>0.745</b> : 1                                                     | Maximum Shear Stress Ratio =      | <b>0.238</b> : 1 |
| Section used for this span                                                                                                                                 | <b>W16x36</b>                                                        | Section used for this span        | <b>W16x36</b>    |
| Ma : Applied                                                                                                                                               | 119.036 k-ft                                                         | Va : Applied                      | 22.323 k         |
| Mn / Omega : Allowable                                                                                                                                     | 159.681 k-ft                                                         | Vn/Omega : Allowable              | 93.810 k         |
| Load Combination                                                                                                                                           | +D+0.750L+0.750S                                                     | Load Combination                  | +D+0.750L+0.750S |
| Location of maximum on span                                                                                                                                | 10.665ft                                                             | Location of maximum on span       | 0.000 ft         |
| Span # where maximum occurs                                                                                                                                | Span # 1                                                             | Span # where maximum occurs       | Span # 1         |
| Maximum Deflection<br>Max Downward Transient Deflection<br>Max Upward Transient Deflection<br>Max Downward Total Deflection<br>Max Upward Total Deflection | 0.446 in Ratio<br>0.000 in Ratio<br>0.754 in Ratio<br>0.000 in Ratio | p = 0 < 480.0<br>p = 340 > = 240. |                  |

| Load Combination   |        | Max Stress | Ratios |        | S      | Summary of M | loment Valu | les       |      |      | Summ   | ary of Sh | ear Values |
|--------------------|--------|------------|--------|--------|--------|--------------|-------------|-----------|------|------|--------|-----------|------------|
| Segment Length     | Span # | М          | V      | Mmax + | Mmax - | Ma Max       | Mnx         | Mnx/Omega | Cb   | Rm   | Va Max | Vnx       | Vnx/Omega  |
| D Only             |        |            |        |        |        |              |             |           |      |      |        |           |            |
| Dsgn. L = 21.33 ft | 1      | 0.302      | 0.096  | 48.23  |        | 48.23        | 266.67      | 159.68    | 1.00 | 1.00 | 9.04   | 140.72    | 93.81      |
| +D+L               |        |            |        |        |        |              |             |           |      |      |        |           |            |
| Dsgn. L = 21.33 ft | 1      | 0.744      | 0.237  | 118.75 |        | 118.75       | 266.67      | 159.68    | 1.00 | 1.00 | 22.27  | 140.72    | 93.81      |
| +D+S               |        |            |        |        |        |              |             |           |      |      |        |           |            |
| Dsgn. L = 21.33 ft | 1      | 0.452      | 0.144  | 72.12  |        | 72.12        | 266.67      | 159.68    | 1.00 | 1.00 | 13.52  | 140.72    | 93.81      |
| +D+0.750L          |        |            |        |        |        |              |             |           |      |      |        |           |            |
| Dsgn. L = 21.33 ft | 1      | 0.633      | 0.202  | 101.12 |        | 101.12       | 266.67      | 159.68    | 1.00 | 1.00 | 18.96  | 140.72    | 93.81      |
| +D+0.750L+0.750S   |        |            |        |        |        |              |             |           |      |      |        |           |            |
| Dsgn. L = 21.33 ft | 1      | 0.745      | 0.238  | 119.04 |        | 119.04       | 266.67      | 159.68    | 1.00 | 1.00 | 22.32  | 140.72    | 93.81      |
| +0.60D             |        |            |        |        |        |              |             |           |      |      |        |           |            |
| Dsgn. L = 21.33 ft | 1      | 0.181      | 0.058  | 28.94  |        | 28.94        | 266.67      | 159.68    | 1.00 | 1.00 | 5.43   | 140.72    | 93.81      |



Printed: 20 JUN 2022, 3:44PM File: Calcs -Updated.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

DESCRIPTION: Steel Beam Grid 11 (Gravity)

#### **Overall Maximum Deflections**

| Load Combination   | Span      | Max. "-" Defl | Location in Span | Load Combination          | Max. "+" Defl  | Location in Spar |
|--------------------|-----------|---------------|------------------|---------------------------|----------------|------------------|
| +D+0.750L+0.750S   | 1         | 0.7538        | 10.726           |                           | 0.0000         | 0.000            |
| Vertical Reactions |           |               | Support          | notation : Far left is #1 | Values in KIPS |                  |
| Load Combination   | Support 1 | Support 2     |                  |                           |                |                  |
| Overall MAXimum    | 22.323    | 22.323        |                  |                           |                |                  |
| Overall MINimum    | 4.479     | 4.479         |                  |                           |                |                  |
| D Only             | 9.045     | 9.045         |                  |                           |                |                  |
| +D+L               | 22.269    | 22.269        |                  |                           |                |                  |
| +D+S               | 13.524    | 13.524        |                  |                           |                |                  |
| +D+0.750L          | 18.963    | 18.963        |                  |                           |                |                  |
| +D+0.750L+0.750S   | 22.323    | 22.323        |                  |                           |                |                  |
| +0.60D             | 5.427     | 5.427         |                  |                           |                |                  |
| L Only             | 13.225    | 13.225        |                  |                           |                |                  |
| S Only             | 4.479     | 4.479         |                  |                           |                |                  |



Printed: 13 JUN 2022, 12:34PM File: Calcs.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

DESCRIPTION: Steel Beam Grid 11 (Lateral)

#### **CODE REFERENCES**

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16

#### **Material Properties**

| ,              | : Allowable Strength Design                             | Fy : Steel Yield : | 50.0 ksi     |  |
|----------------|---------------------------------------------------------|--------------------|--------------|--|
| Beam Bracing : | Beam is Fully Braced against lateral-torsional buckling | E: Modulus :       | 29,000.0 ksi |  |
| Bending Axis : | Major Axis Bending                                      |                    |              |  |
|                |                                                         |                    |              |  |

|    |                   | D(0.224)        | S(0.42)  | •  |    |
|----|-------------------|-----------------|----------|----|----|
| ¢  | W(-4.67) E(-16.1) | D(0.224)        | E(018)1) | ¢  | Ŷ  |
| ¢. | ÷                 | D(0.192)        | L(0.64)  | ¢  | \$ |
| \$ | *                 | \$              |          | \$ | \$ |
|    |                   |                 |          |    | *  |
|    |                   | W16             | x36      |    | ~  |
|    |                   | W16<br>Span = 2 |          |    |    |

#### **Applied Loads**

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loading Uniform Load : D = 0.0120, L = 0.040 ksf, Tributary Width = 16.0 ft, (Floor Load)

Uniform Load : D = 0.0120, L = 0.040 ksf, Tributary Width = 15.0 ft, (Second Floor)

Uniform Load : D = 0.0160, S = 0.030 ksf, Tributary Width = 14.0 ft, (Roof Load)

Uniform Load : D = 0.0120 ksf, Tributary Width = 18.0 ft, (Wall Load)

Point Load : W = -4.670, E = -16.10 k @ 4.250 ft, (SW-3)

Point Load : W = 4.670, E = 16.10 k @ 10.750 ft, (SW-3)

#### DESIGN SUMMARY

| DESIGN SUMMARY                                                                                                                                          |                                                  |                                                                                | Design OK                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------|
| Maximum Bending Stress Ration<br>Section used for this span                                                                                             | = 0.915:1<br>W16x36                              | Maximum Shear Stress Ratio =<br>Section used for this span                     | 0.265:1<br>W16x36                                 |
| Ma : Applied                                                                                                                                            | 146.177 k-ft                                     | Va : Applied                                                                   | 24.899 k                                          |
| Mn / Omega : Allowa                                                                                                                                     | ble 159.681 k-ft                                 | Vn/Omega : Allowable                                                           | 93.810 k                                          |
| Load Combination<br>Location of maximum on span<br>Span # where maximum occurs                                                                          | +D+0.750L+0.750S+0.5250E<br>10.787ft<br>Span # 1 | Load Combination<br>Location of maximum on span<br>Span # where maximum occurs | +D+0.750L+0.750S+0.5250E<br>21.330 ft<br>Span # 1 |
| Maximum Deflection<br>Max Downward Transient Deflect<br>Max Upward Transient Deflection<br>Max Downward Total Deflection<br>Max Upward Total Deflection |                                                  | tio = 0 <480.0<br>tio = 300 >=240.                                             |                                                   |

|        | Max Stress                           | Ratios                                                                                                                   |                                                                                                                                                       | Summary of Moment Values Su                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Summ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Immary of Shear Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|--------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Span # | М                                    | V                                                                                                                        | Mmax +                                                                                                                                                | Mmax -                                                                                                                                                                                                                                                              | Ma Max                                                                                                                                                                                                                                                                                | Mnx                                                                                                                                                                                                                                                                                                                                                         | Mnx/Omega                                                                                                                                                                                                                                                                                                                                                                                                                           | Cb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Va Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vnx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vnx/Omega                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|        |                                      |                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 1      | 0.302                                | 0.096                                                                                                                    | 48.23                                                                                                                                                 |                                                                                                                                                                                                                                                                     | 48.23                                                                                                                                                                                                                                                                                 | 266.67                                                                                                                                                                                                                                                                                                                                                      | 159.68                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 140.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|        |                                      |                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 1      | 0.744                                | 0.237                                                                                                                    | 118.75                                                                                                                                                |                                                                                                                                                                                                                                                                     | 118.75                                                                                                                                                                                                                                                                                | 266.67                                                                                                                                                                                                                                                                                                                                                      | 159.68                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 140.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|        |                                      |                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 1      | 0.452                                | 0.144                                                                                                                    | 72.12                                                                                                                                                 |                                                                                                                                                                                                                                                                     | 72.12                                                                                                                                                                                                                                                                                 | 266.67                                                                                                                                                                                                                                                                                                                                                      | 159.68                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 140.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|        |                                      |                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 1      | 0.633                                | 0.202                                                                                                                    | 101.12                                                                                                                                                |                                                                                                                                                                                                                                                                     | 101.12                                                                                                                                                                                                                                                                                | 266.67                                                                                                                                                                                                                                                                                                                                                      | 159.68                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 140.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|        |                                      |                                                                                                                          |                                                                                                                                                       |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 1      | 0.745                                | 0.238                                                                                                                    | 119.04                                                                                                                                                |                                                                                                                                                                                                                                                                     | 119.04                                                                                                                                                                                                                                                                                | 266.67                                                                                                                                                                                                                                                                                                                                                      | 159.68                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 140.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|        | Span #<br>1<br>1<br>1<br>1<br>1<br>1 | Span #         M           1         0.302           1         0.744           1         0.452           1         0.633 | 1         0.302         0.096           1         0.744         0.237           1         0.452         0.144           1         0.633         0.202 | Span #         M         V         Mmax +           1         0.302         0.096         48.23           1         0.744         0.237         118.75           1         0.452         0.144         72.12           1         0.633         0.202         101.12 | Span #         M         V         Mmax +         Mmax -           1         0.302         0.096         48.23            1         0.744         0.237         118.75            1         0.452         0.144         72.12            1         0.633         0.202         101.12 | Span #         M         V         Mmax +         Mmax -         Ma Max           1         0.302         0.096         48.23         48.23           1         0.744         0.237         118.75         118.75           1         0.452         0.144         72.12         72.12           1         0.633         0.202         101.12         101.12 | Span #         M         V         Mmax +         Mmax -         Ma Max         Mnx           1         0.302         0.096         48.23         48.23         266.67           1         0.744         0.237         118.75         118.75         266.67           1         0.452         0.144         72.12         72.12         266.67           1         0.633         0.202         101.12         101.12         266.67 | Span #         M         V         Mmax +         Mmax -         Ma Max         Mnx         Mnx/Omega           1         0.302         0.096         48.23         48.23         266.67         159.68           1         0.744         0.237         118.75         118.75         266.67         159.68           1         0.452         0.144         72.12         72.12         266.67         159.68           1         0.633         0.202         101.12         101.12         266.67         159.68 | Span #         M         V         Mmax +         Mmax -         Ma Max         Mnx         Mnx/Omega         Cb           1         0.302         0.096         48.23         48.23         266.67         159.68         1.00           1         0.744         0.237         118.75         118.75         266.67         159.68         1.00           1         0.452         0.144         72.12         72.12         266.67         159.68         1.00           1         0.633         0.202         101.12         101.12         266.67         159.68         1.00 | Span #         M         V         Mmax +         Mmax -         Ma Max         Mnx         Mnx/Omega         Cb         Rm           1         0.302         0.096         48.23         48.23         266.67         159.68         1.00         1.00           1         0.744         0.237         118.75         118.75         266.67         159.68         1.00         1.00           1         0.452         0.144         72.12         72.12         266.67         159.68         1.00         1.00           1         0.633         0.202         101.12         266.67         159.68         1.00         1.00 | Span #         M         V         Mmax +         Mmax -         Ma Max         Mnx         Mnx/Omega         Cb         Rm         Va Max           1         0.302         0.096         48.23         48.23         266.67         159.68         1.00         1.00         9.04           1         0.744         0.237         118.75         118.75         266.67         159.68         1.00         1.00         22.27           1         0.452         0.144         72.12         72.12         266.67         159.68         1.00         1.00         13.52           1         0.633         0.202         101.12         101.12         266.67         159.68         1.00         1.00         18.96 | Span #         M         V         Mmax +         Mmax -         Ma Max         Mnx         Mnx/Omega         Cb         Rm         Va Max         Vnx           1         0.302         0.096         48.23         48.23         266.67         159.68         1.00         1.00         9.04         140.72           1         0.744         0.237         118.75         118.75         266.67         159.68         1.00         1.00         22.27         140.72           1         0.452         0.144         72.12         72.12         266.67         159.68         1.00         1.00         13.52         140.72           1         0.633         0.202         101.12         101.12         266.67         159.68         1.00         1.00         18.96         140.72 |  |



+0.60D+0.70E

L Only

S Only

W Only E Only 1.993

13.225

4.479

-1.423

-4.906

8.861

13.225

4.479

1.423

4.906

#### Printed: 13 JUN 2022, 12:34PM File: Calcs.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

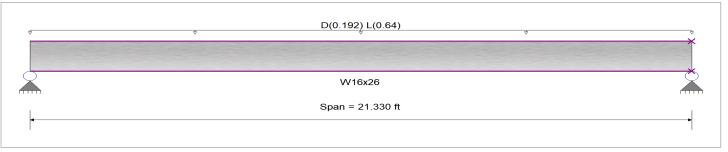
### Lic. # : KW-06005835

| Load Combination               |        | Max Stres | ss Ratios     |         | 5         | Summary of M   | loment Valu | les       |      |          | Summ        | hary of She | ear Values |
|--------------------------------|--------|-----------|---------------|---------|-----------|----------------|-------------|-----------|------|----------|-------------|-------------|------------|
| Segment Length                 | Span # | М         | V             | Mmax +  | Mmax -    | Ma Max         | Mnx         | Mnx/Omega | Cb   | Rm       | Va Max      | Vnx         | Vnx/Omega  |
| +D+0.60W                       |        |           |               |         |           |                |             |           |      |          |             |             |            |
| Dsgn. L = 21.33 ft             | 1      | 0.358     | 0.106         | 57.23   |           | 57.23          | 266.67      | 159.68    | 1.00 | 1.00     | 9.90        | 140.72      | 93.81      |
| +D+0.750L+0.450W               |        |           |               |         |           |                |             |           |      |          |             |             |            |
| Dsgn. L = 21.33 ft             | 1      | 0.675     | 0.209         | 107.86  |           | 107.86         | 266.67      | 159.68    | 1.00 | 1.00     | 19.60       | 140.72      | 93.81      |
| +D+0.750L+0.750S+0.450W        |        |           |               | 405 33  |           | 405 33         |             | 450.40    |      |          |             |             |            |
| Dsgn. L = $21.33$ ft           | 1      | 0.788     | 0.245         | 125.77  |           | 125.77         | 266.67      | 159.68    | 1.00 | 1.00     | 22.96       | 140.72      | 93.81      |
| +0.60D+0.60W                   | 1      | 0.238     | 0.067         | 37.94   |           | 37.94          | 266.67      | 159.68    | 1 00 | 1.00     | 6.28        | 140.72      | 93.81      |
| Dsgn. L = 21.33 ft<br>+D+0.70E | I      | 0.230     | 0.007         | 57.94   |           | 37.94          | 200.07      | 109.00    | 1.00 | 1.00     | 0.20        | 140.72      | 93.01      |
| Dsqn. L = $21.33$ ft           | 1      | 0.529     | 0.141         | 84.43   |           | 84.43          | 266.67      | 159.68    | 1 00 | 1.00     | 13.26       | 140.72      | 93.81      |
| +D+0.750L+0.750S+0.5250E       | •      | 0.027     | 0.111         | 01.10   |           | 01.10          | 200.07      | 107.00    | 1.00 | 1.00     | 10.20       | 110.72      | 70.01      |
| Dsqn. L = 21.33 ft             | 1      | 0.915     | 0.265         | 146.18  |           | 146.18         | 266.67      | 159.68    | 1.00 | 1.00     | 24.90       | 140.72      | 93.81      |
| +0.60D+0.70E                   |        |           |               |         |           |                |             |           |      |          |             |             |            |
| Dsgn. L = 21.33 ft             | 1      | 0.408     | 0.118         | 65.14   |           | 65.14          | 266.67      | 159.68    | 1.00 | 1.00     | 11.09       | 140.72      | 93.81      |
| <b>Overall Maximum</b>         | Defle  | ctions    |               |         |           |                |             |           |      |          |             |             |            |
| Load Combination               |        | Span      | Max. "-" Defl | Locatio | n in Span | Load Com       | bination    |           |      | Max      | (. "+" Defl | Location    | n in Span  |
| +D+0.750L+0.750S+0.525         | 0E     | 1         | 0.8530        |         | 10.909    |                |             |           |      |          | 0.0000      |             | 0.000      |
| Vertical Reactions             | S      |           |               |         | Support   | notation : Far | left is #1  |           |      | Values i | n KIPS      |             |            |
| Load Combination               |        | Support 1 | Support 2     |         |           |                |             |           |      |          |             |             |            |
| Overall MAXimum                |        | 22.323    | 24.898        |         |           |                |             |           |      |          |             |             |            |
| Overall MINimum                |        | -1.423    | 1.423         |         |           |                |             |           |      |          |             |             |            |
| D Only                         |        | 9.045     | 9.045         |         |           |                |             |           |      |          |             |             |            |
| +D+L                           |        | 22.269    | 22.269        |         |           |                |             |           |      |          |             |             |            |
| +D+S                           |        | 13.524    | 13.524        |         |           |                |             |           |      |          |             |             |            |
| +D+0.750L                      |        | 18.963    | 18.963        |         |           |                |             |           |      |          |             |             |            |
| +D+0.750L+0.750S               |        | 22.323    | 22.323        |         |           |                |             |           |      |          |             |             |            |
| +D+0.60W                       |        | 8.191     | 9.899         |         |           |                |             |           |      |          |             |             |            |
| +D+0.750L+0.450W               |        | 18.323    | 19.604        |         |           |                |             |           |      |          |             |             |            |
| +D+0.750L+0.750S+0.450         | W      | 21.682    | 22.963        |         |           |                |             |           |      |          |             |             |            |
| +0.60D+0.60W                   |        | 4.573     | 6.281         |         |           |                |             |           |      |          |             |             |            |
| +D+0.70E                       |        | 5.610     | 12.479        |         |           |                |             |           |      |          |             |             |            |
|                                |        |           |               |         |           |                |             |           |      |          |             |             |            |
| +D+0.750L+0.750S+0.525         | 0E     | 19.747    | 24.898        |         |           |                |             |           |      |          |             |             |            |



Printed: 13 JUN 2022, 2:44PM File: Calcs.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

> 50.0 ksi 29,000.0 ksi


#### DESCRIPTION: Steel Beam Grid 8

#### **CODE REFERENCES**

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16

#### **Material Properties**

| Analysis Method : | Allowable Strength Design                               |
|-------------------|---------------------------------------------------------|
| Beam Bracing :    | Beam is Fully Braced against lateral-torsional buckling |
| Bending Axis :    | Major Axis Bending                                      |



#### **Applied Loads**

Service loads entered. Load Factors will be applied for calculations.

Fy : Steel Yield : E: Modulus :

Beam self weight calculated and added to loading

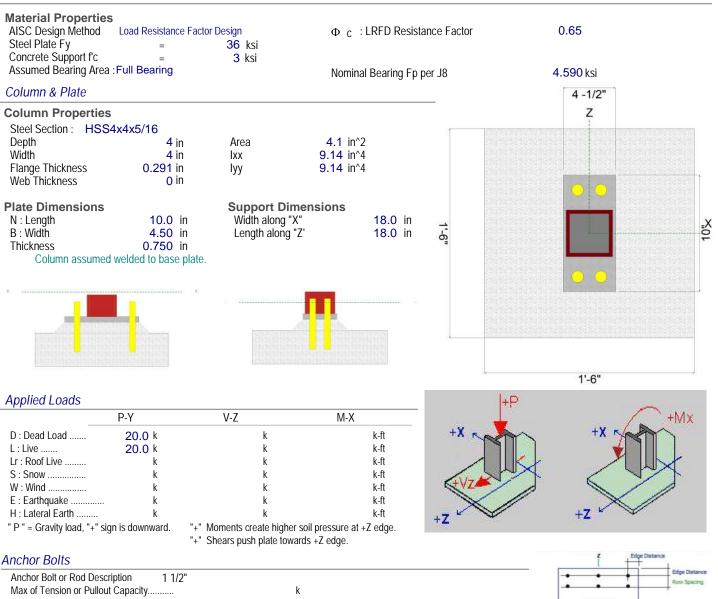
Uniform Load : D = 0.0120, L = 0.040 ksf, Tributary Width = 16.0 ft, (Floor Load)

| DESIGN SUMMARY                                                                                                                                             |                                                                              |                                                                                | Design OK                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------|
| Maximum Bending Stress Ratio =                                                                                                                             | 0.443 : 1 Max                                                                | kimum Shear Stress Ratio =                                                     | <b>0.130</b> : 1             |
| Section used for this span                                                                                                                                 | W16x26                                                                       | Section used for this span                                                     | W16x26                       |
| Ma : Applied                                                                                                                                               | 48.804 k-ft                                                                  | Va : Applied                                                                   | 9.152 k                      |
| Mn / Omega : Allowable                                                                                                                                     | 110.279 k-ft                                                                 | Vn/Omega : Allowable                                                           | 70.509 k                     |
| Load Combination<br>Location of maximum on span<br>Span # where maximum occurs                                                                             | +D+L<br>10.665ft<br>Span # 1                                                 | Load Combination<br>Location of maximum on span<br>Span # where maximum occurs | +D+L<br>0.000 ft<br>Span # 1 |
| Maximum Deflection<br>Max Downward Transient Deflection<br>Max Upward Transient Deflection<br>Max Downward Total Deflection<br>Max Upward Total Deflection | 0.343 in Ratio =<br>0.000 in Ratio =<br>0.460 in Ratio =<br>0.000 in Ratio = | 746 >=480.<br>0 <480.0<br>556 >=240.<br>0 <240.0                               |                              |

| Load Combination      |           | Max Stres | ss Ratios |        | Summary of Moment Values |        |        |           |      | Summary of Shear Values |        |        |           |
|-----------------------|-----------|-----------|-----------|--------|--------------------------|--------|--------|-----------|------|-------------------------|--------|--------|-----------|
| Segment Length        | Span #    | М         | V         | Mmax + | Mmax -                   | Ma Max | Mnx    | Mnx/Omega | Cb   | Rm                      | Va Max | Vnx    | Vnx/Omega |
| D Only                |           |           |           |        |                          |        |        |           |      |                         |        |        |           |
| Dsgn. L = 21.33 ft    | 1         | 0.112     | 0.033     | 12.41  |                          | 12.41  | 184.17 | 110.28    | 1.00 | 1.00                    | 2.33   | 117.75 | 70.51     |
| +D+L                  |           |           |           |        |                          |        |        |           |      |                         |        |        |           |
| Dsgn. L = 21.33 ft    | 1         | 0.443     | 0.130     | 48.80  |                          | 48.80  | 184.17 | 110.28    | 1.00 | 1.00                    | 9.15   | 117.75 | 70.51     |
| +D+0.750L             |           |           |           |        |                          |        |        |           |      |                         |        |        |           |
| Dsgn. L = 21.33 ft    | 1         | 0.360     | 0.106     | 39.70  |                          | 39.70  | 184.17 | 110.28    | 1.00 | 1.00                    | 7.45   | 117.75 | 70.51     |
| +0.60Ď                |           |           |           |        |                          |        |        |           |      |                         |        |        |           |
| Dsgn. L = 21.33 ft    | 1         | 0.067     | 0.020     | 7.44   |                          | 7.44   | 184.17 | 110.28    | 1.00 | 1.00                    | 1.40   | 117.75 | 70.51     |
| <b>Overall Maximu</b> | um Deflec | tions     |           |        |                          |        |        |           |      |                         |        |        |           |
|                       |           | 0         |           |        | 0                        | 1 10   |        |           |      |                         |        |        |           |

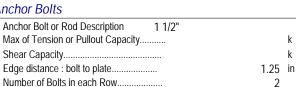
| Load Combination   | Span      | Max. "-" Defl | Location in Span | Load Combination          | Max. "+" Defl  | Location in Span |
|--------------------|-----------|---------------|------------------|---------------------------|----------------|------------------|
| +D+L               | 1         | 0.4600        | 10.726           |                           | 0.0000         | 0.000            |
| Vertical Reactions |           |               | Support          | notation : Far left is #1 | Values in KIPS |                  |
| Load Combination   | Support 1 | Support 2     |                  |                           |                |                  |
| Overall MAXimum    | 9.152     | 9.152         |                  |                           |                |                  |
| Overall MINimum    | 1.396     | 1.396         |                  |                           |                |                  |
| D Only             | 2.326     | 2.326         |                  |                           |                |                  |
| +D+L               | 9.152     | 9.152         |                  |                           |                |                  |
| +D+0.750L          | 7.446     | 7.446         |                  |                           |                |                  |
| +0.60D             | 1.396     | 1.396         |                  |                           |                |                  |
| L Only             | 6.826     | 6.826         |                  |                           |                |                  |




### **Steel Base Plate**

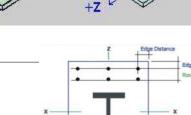
#### Lic. # : KW-06005835 DESCRIPTION: HSS4x4 Base Plate

#### Code References


Calculations per AISC Design Guide # 1, IBC 2018, CBC 2019, ASCE 7-16, AISC 360-16 Load Combination Set : ASCE 7-16

#### General Information




Project Title:

Engineer: Project ID: Project Descr:



1

Number of Bolt Rows.....





#### Lic. # : KW-06005835

#### DESCRIPTION: HSS4x4 Base Plate

#### GOVERNING DESIGN LOAD CASE SUMMARY

#### Plate Design Summary Design Method Governing Load Combination

Governing Load Case Type Governing STRESS RATIO Design Plate Size

Pu : Axial ..... Mu : Moment ...... Load Resistance Factor Design +1.20D+1.60L Axial Load Only 0.8749 10" x 4 -1/2" x 0 -3/4" 0.000 k 0.000 k-ft

| Mu : Max. Moment               | 5.980 k-in        |
|--------------------------------|-------------------|
| b : Max. Bending Stress        | 28.348 ksi        |
| Fb : Allowable :<br>Fy * Phi   | 32.400 ksi        |
| Bending Stress Ratio           | 0.875             |
|                                | Bending Stress OK |
| fu : Max. Plate Bearing Stress | 1.244 ksi         |
| Fp : Allowable :               | 2.984 ksi         |
| Bearing Stress Ratio           | 0.417             |
| ő                              | Bearing Stress OK |

Project Title:

Engineer: Project ID: Project Descr:

#### Load Comb. : +1.40D

| Loading<br>Pu : Axial<br>Design Plate Height<br>Design Plate Width<br>Will be different from entry if partial bearing used. | 28.000 k<br>10.000 in<br>4.500 in |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| A1 : Plate Area                                                                                                             | 45.000 in^2                       |
| A2: Support Area                                                                                                            | 145.800 in^2                      |
| sqrt( A2/A1 )                                                                                                               | 1.800                             |
| Distance for Moment Calculation                                                                                             |                                   |
| " m "                                                                                                                       | 3.100 in                          |
| " n "                                                                                                                       | 0.350 in                          |
| Χ                                                                                                                           | 0.000 in^2                        |
| Lambda                                                                                                                      | 0.000                             |
| n'                                                                                                                          | 0.000 in                          |
| n' * Lambda                                                                                                                 | 0.000 in                          |
| L = max(m, n, n")                                                                                                           | 3.100 in                          |

#### Bearing Stresses Fp : Allowable ..... 2.984 ksi fu : Max. Bearing Pressure 0.622 ksi Stress Ratio ..... 0.209 Plate Bending Stresses Mmax = Fu \* L^2 / 2 ..... 2.990 k-in fb : Actual ..... 14.174 ksi Fb : Allowable ..... 32.400 ksi Stress Ratio ..... 0.437

Axial Load Only, No Moment

Axial Load Only, No Moment

#### Load Comb. : +1.20D+1.60L

| Loading<br>Pu : Axial<br>Design Plate Height<br>Design Plate Width<br>Will be different from entry if partial bearing used. | 56.000 k<br>10.000 in<br>4.500 in |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| A1 : Plate Area                                                                                                             | 45.000 in^2                       |
| A2: Support Area                                                                                                            | <sup>145.800</sup> in^2           |
| sqrt( A2/A1 )                                                                                                               | 1.800                             |
| Distance for Moment Calculation                                                                                             |                                   |
| " m "                                                                                                                       | 3.100 in                          |
| " n "                                                                                                                       | 0.350 in                          |
| Χ                                                                                                                           | 0.000 in^2                        |
| Lambda                                                                                                                      | 0.000                             |
| n'                                                                                                                          | 0.000 in                          |
| n' * Lambda                                                                                                                 | 0.000 in                          |
| L = max(m, n, n")                                                                                                           | 3.100 in                          |

| Bearing Stresses           |            |
|----------------------------|------------|
| Fp : Allowable             | 2.984 ksi  |
| fu : Max. Bearing Pressure | 1.244 ksi  |
| Stress Ratio               | 0.417      |
| Plate Bending Stresses     |            |
| Mmax = Fu * L^2 / 2        | 5.980 k-in |
| fb : Actual                | 28.348 ksi |
| Fb : Allowable             | 32.400 ksi |
| Stress Ratio               | 0.875      |

Printed: 21 JUN 2022, 11:21AM File: Calcs -Updated.ec6

QUANTUM CONSULTING ENGINEERS

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31



## Steel Base Plate

#### DESCRIPTION: HSS4x4 Base Plate

#### Load Comb. : +1.20D+L

| Loading<br>Pu : Axial<br>Design Plate Height<br>Design Plate Width<br>Will be different from entry if partial bearing used. | 44.000 k<br>10.000 in<br>4.500 in |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| A1 : Plate Area<br>A2: Support Area                                                                                         | 45.000 in^2<br>145.800 in^2       |
| sqrt( A2/A1 )                                                                                                               | 1.800                             |
| Distance for Moment Calculation                                                                                             | 2 100 1-                          |
| " m "<br>" n "                                                                                                              | 3.100 in<br>0.350 in              |
| X                                                                                                                           | 0.000 in^2                        |
| Lambda                                                                                                                      | 0.000                             |
| n'                                                                                                                          | 0.000 in                          |
| n' * Lambda                                                                                                                 | 0.000 in                          |

3.100 in

24.000 k

10.000 in

4.500 in

45.000 in^2

145.800 in^2

1.800

#### Printed: 21 JUN 2022, 11:21AM

#### File: Calcs -Updated.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

#### Axial Load Only, No Moment

| Bearing Stresses           |            |
|----------------------------|------------|
| Fp : Allowable             | 2.984 ksi  |
| fu : Max. Bearing Pressure | 0.978 ksi  |
| Stress Ratio               | 0.328      |
| Plate Bending Stresses     |            |
| Mmax = Fu * L^2 / 2        | 4.698 k-in |
| fb : Actual                | 22.273 ksi |
| Fb : Allowable             | 32.400 ksi |
| Stress Ratio               | 0.687      |
|                            |            |

#### Axial Load Only, No Moment

| Bearing Stresses           |            |
|----------------------------|------------|
| Fp : Allowable             | 2.984 ksi  |
| fu : Max. Bearing Pressure | 0.533 ksi  |
| Stress Ratio               | 0.179      |
| Plate Bending Stresses     |            |
| Mmax = Fu * L^2 / 2        | 2.563 k-in |
| fb : Actual                | 12.149 ksi |
| Fb : Allowable             | 32.400 ksi |
| Stress Ratio               | 0.375      |

#### Distance for Moment Calculation

Load Comb. : +0.90D

A2: Support Area .....

L = max(m, n, n") ..... Load Comb. : +1.20D

> Design Plate Width ....... Will be different from entry if partial bearing used.

Loading

Pu : Axial .....

Design Plate Height .....

A1 : Plate Area .....

sqrt(A2/A1)

| " m "             | 3.100 in   |
|-------------------|------------|
| " n "             | 0.350 in   |
| Χ                 | 0.000 in^2 |
| Lambda            | 0.000      |
| n'                | 0.000 in   |
| n' * Lambda       | 0.000 in   |
| L = max(m, n, n") | 3.100 in   |
|                   |            |

#### Axial Load Only, No Moment

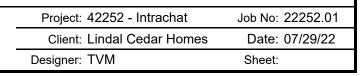
| Loading<br>Pu : Axial<br>Design Plate Height<br>Design Plate Width<br>Will be different from entry if partial bearing used. | 18.000 k<br>10.000 in<br>4.500 in |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| A1 : Plate Area                                                                                                             | 45.000 in^2                       |
| A2: Support Area                                                                                                            | <sup>145.800</sup> in^2           |
| sqrt( A2/A1 )                                                                                                               | 1.800                             |
| Distance for Moment Calculation                                                                                             |                                   |
| " m "                                                                                                                       | 3.100 in                          |
| " n "                                                                                                                       | 0.350 in                          |
| Χ                                                                                                                           | 0.000 in^2                        |
| Lambda                                                                                                                      | 0.000                             |
| n'                                                                                                                          | 0.000 in                          |
| n' * Lambda                                                                                                                 | 0.000 in                          |
| L = max(m, n, n")                                                                                                           | 3.100 in                          |

| Bearing Stresses           |            |
|----------------------------|------------|
| Fp : Allowable             | 2.984 ksi  |
| fu : Max. Bearing Pressure | 0.400 ksi  |
| Stress Ratio               | 0.134      |
| Plate Bending Stresses     |            |
| Mmax = Fu * L^2 / 2        | 1.922 k-in |
| fb : Actual                | 9.112 ksi  |
| Fb : Allowable             | 32.400 ksi |
| Stress Ratio               | 0.281      |

## Railing Design Per IBC 2018

Design Railing Anchorage

#### 1.) Railng


Railing is a glass panel pin system type railing by Viewrail the bolts onto the face of perimeter framing. Railing anchorage to framing and design are by mfr, see ICC-ES Evaluation Report ESR-4799

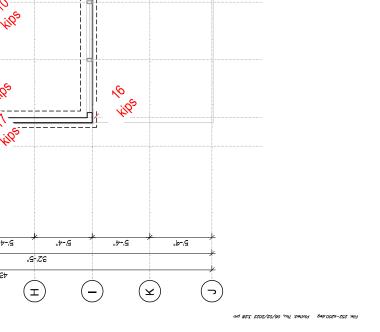
### 2.) Wood Framing Attachment

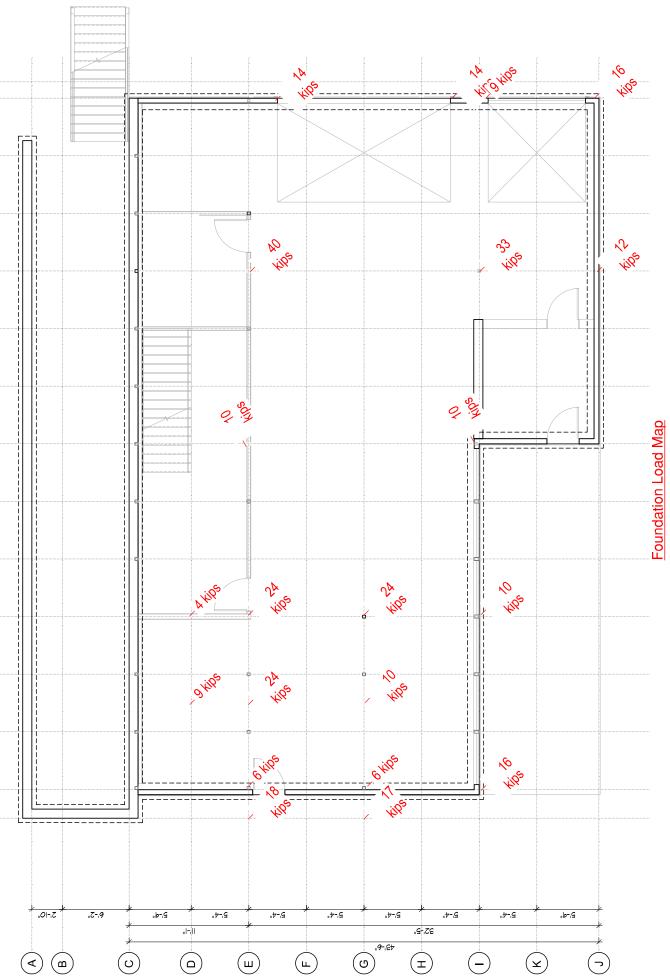
| Design Load: | 200 lb  |                                                                            |
|--------------|---------|----------------------------------------------------------------------------|
| Joist Size:  | 2x8     |                                                                            |
| Moment Arm:  | 5.75"   |                                                                            |
| Tension:     | 1252 lb | DTT2Z Connector Capacity is 1800 lb > 1252 lb OK                           |
| Compression: | 1252 lb | Attach directly to perpendicular joists, see blocking calc below           |
|              |         | for parallel joists. Use blocking to transfer overturning force to joists. |

|   | 3 |  |
|---|---|--|
|   | y |  |
| - |   |  |

Quantum Consulting Engineers LLC 1511 Third Avenue, Suite 323 Seattle, WA 98101







#### **42252 INTRACHAT RESIDENCE** 7929 EAST MERCER WAY MERCER ISLAND, WA 98040

QUANTUM JOB NUMBER: 22252.01

# FOUNDATION DESIGN







## Pipe Pile Loading

4"Ø Pipe Piles (10 ton capacity)

### <u>Grid 14</u>

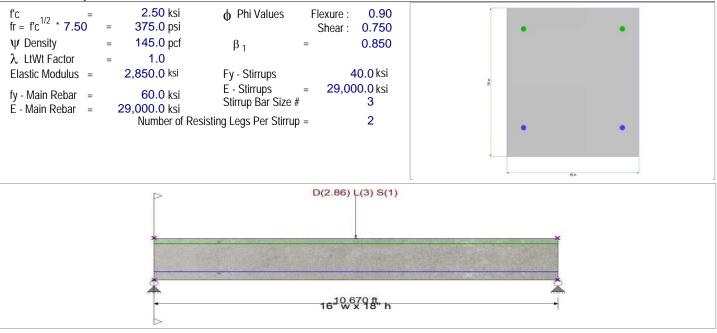
| <u> 6110 14</u> |            | _     |          |           |                        |         |        |         |
|-----------------|------------|-------|----------|-----------|------------------------|---------|--------|---------|
|                 |            |       | oad Type |           |                        |         | _      |         |
| Level           | Trib Wi    |       | Dea      |           | Live                   | 9       | Snow   |         |
| Roof            |            | 14 ft | 16 psf   | 224 plf   |                        |         | 30 psf | 420 plf |
| 2nd Flr         |            | 10 ft | 12 psf   | 120 plf   | 40 psf                 | 400 plf |        |         |
| 1st Flr         |            | 10 ft | 12 psf   | 120 plf   | 40 psf                 | 400 plf |        |         |
| Walls           |            | 18 ft | 12 psf   | 216 plf   |                        |         |        |         |
| Grade BN        | 1.+1' Stem |       |          | 400 plf   |                        |         |        |         |
| Total           |            |       |          | 1080 plf  |                        | 800 plf |        | 420 plf |
| Load Case       | e:         |       |          |           |                        |         |        |         |
| DL+LL =         |            |       |          | 1880 lb   |                        |         |        |         |
| DL+0.75(l       | LL+SL) =   |       |          | 1995 lb ( | Controls               |         |        |         |
| Max Pile S      | Spacing =  |       |          | 10.0 ft   |                        |         |        |         |
| <u>Grid C</u>   |            |       |          |           |                        |         |        |         |
|                 |            | Lo    | oad Type |           |                        |         |        |         |
| Level           | Trib Wi    | dth   | Dea      | d         | Live                   | 9       | Snow   |         |
| Roof            |            | 12 ft | 16 psf   | 192 plf   |                        |         | 30 psf | 360 plf |
| 2nd Flr         |            | 6 ft  | 12 psf   | 72 plf    | 40 psf                 | 240 plf | ·      |         |
| 1st Flr         |            | 6 ft  | 12 psf   | 72 plf    | 40 psf                 | 240 plf |        |         |
| Walls           |            | 18 ft | 12 psf   | 216 plf   | •                      | •       |        |         |
| Grade BN        | 1          |       | ·        | 300 plf   |                        |         |        |         |
| Stem Wal        | I          |       |          | 900 plf   |                        |         |        |         |
| Total           |            |       |          | 1752 plf  |                        | 480 plf |        | 360 plf |
|                 |            |       |          |           |                        |         |        |         |
| Load Case       | e:         |       |          | 0000 IL   |                        |         |        |         |
| DL+LL =         |            |       |          | 2232 lb   | <b>N</b> = 1 = 1 = 1 = |         |        |         |
| DL+0.75(l       |            |       |          | 2382 lb ( | controis               |         |        |         |
| Max Pile S      | Spacing =  |       |          | 8.4 ft    |                        |         |        |         |
|                 |            |       |          |           |                        |         |        |         |
|                 |            |       |          |           |                        |         |        |         |
|                 |            |       |          |           |                        |         |        |         |
|                 |            |       |          |           |                        |         |        |         |
|                 |            |       |          |           |                        |         |        |         |
|                 |            |       |          |           |                        |         |        |         |
|                 |            |       |          |           |                        |         |        |         |
|                 |            |       |          |           |                        |         |        |         |
|                 |            |       |          |           |                        |         |        |         |



**Quantum Consulting Engineers LLC** 1511 Third Avenue, Suite 323 Seattle, WA 98101

| e<br>ead<br>f 60 plf<br>f 180 plf<br>f 800 plf<br>400 plf<br>1500 plf<br>2327 lb<br>2120 lb<br>8.6 ft<br>ee<br>ead | Live<br>40 psf<br>40 psf<br>40 psf<br>Controls | 200 plf<br>200 plf<br>427 plf<br>827 plf | Snow                                                                                   | 0 pl                                              |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------|
| ead<br>f 60 plf<br>f 60 plf<br>f 180 plf<br>f 800 plf<br>400 plf<br>1500 plf<br>2327 lb<br>2120 lb<br>8.6 ft       | 40 psf<br>40 psf<br>40 psf                     | 200 plf<br>200 plf<br>427 plf<br>827 plf |                                                                                        | 0 pl                                              |
| f 60 plf<br>f 60 plf<br>f 180 plf<br>f 800 plf<br>400 plf<br>1500 plf<br>2327 lb<br>2120 lb<br>8.6 ft              | 40 psf<br>40 psf<br>40 psf                     | 200 plf<br>200 plf<br>427 plf<br>827 plf |                                                                                        | 0 pl                                              |
| f 60 plf<br>f 180 plf<br>f 800 plf<br>400 plf<br>1500 plf<br>2327 lb<br>2120 lb<br>8.6 ft                          | 40 psf<br>40 psf                               | 200 plf<br>427 plf<br>827 plf            | Snow                                                                                   | 0 pl                                              |
| f 180 plf<br>f 800 plf<br>400 plf<br>1500 plf<br>2327 lb<br>2120 lb<br>8.6 ft                                      | Controls                                       | 827 plf                                  | Snow                                                                                   | 0 pl                                              |
| 400 plf<br>1500 plf<br>2327 lb<br>2120 lb<br>8.6 ft                                                                | Controls                                       | 827 plf                                  | Snow                                                                                   | 0 pl                                              |
| 1500 plf<br>2327 lb<br>2120 lb<br>8.6 ft                                                                           |                                                |                                          | Snow                                                                                   | 0 pl                                              |
| 2327 lb<br>2120 lb<br>8.6 ft<br>ee                                                                                 |                                                |                                          | Snow                                                                                   | 0 pl                                              |
| 2120 lb<br>8.6 ft<br>ee<br>ead                                                                                     |                                                | e                                        | Snow                                                                                   |                                                   |
| 2120 lb<br>8.6 ft<br>ee<br>ead                                                                                     |                                                | e                                        | Snow                                                                                   |                                                   |
| 8.6 ft<br>ee<br>ead                                                                                                | Live                                           | e                                        | Snow                                                                                   |                                                   |
| e<br>ead                                                                                                           | Live                                           | e                                        | Snow                                                                                   |                                                   |
| ead                                                                                                                | Live                                           | e                                        | Snow                                                                                   |                                                   |
|                                                                                                                    | LIV                                            | e                                        | Snow                                                                                   |                                                   |
| fla 008 f                                                                                                          |                                                |                                          |                                                                                        |                                                   |
| 400 plf                                                                                                            | 40 psf                                         | 427 plf                                  |                                                                                        |                                                   |
| 1200 plf                                                                                                           |                                                | 427 plf                                  |                                                                                        | 0 pl                                              |
|                                                                                                                    |                                                |                                          |                                                                                        |                                                   |
|                                                                                                                    | Controis                                       |                                          |                                                                                        |                                                   |
|                                                                                                                    |                                                |                                          |                                                                                        |                                                   |
| 12.5 11                                                                                                            |                                                |                                          |                                                                                        |                                                   |
|                                                                                                                    |                                                |                                          |                                                                                        |                                                   |
|                                                                                                                    |                                                |                                          |                                                                                        |                                                   |
|                                                                                                                    |                                                |                                          |                                                                                        |                                                   |
|                                                                                                                    |                                                |                                          |                                                                                        |                                                   |
|                                                                                                                    |                                                |                                          |                                                                                        |                                                   |
|                                                                                                                    |                                                |                                          |                                                                                        |                                                   |
|                                                                                                                    |                                                |                                          |                                                                                        |                                                   |
|                                                                                                                    | 1627 lb<br>1520 lb<br>12.3 ft                  | 1627 lb Controls<br>1520 lb<br>12.3 ft   | 1627 Ib Controls<br>1520 Ib<br>12.3 ft<br>-C Intrachat Residence<br>Lindal Cedar Homes | 1627 lb <i>Controls</i><br>1520 lb<br>12.3 ft<br> |

|                                           |                              |              | ,         |                    |                           |         |                        |                 |
|-------------------------------------------|------------------------------|--------------|-----------|--------------------|---------------------------|---------|------------------------|-----------------|
| Grid I (                                  | <u>5-8)</u>                  | -            |           |                    |                           |         |                        |                 |
|                                           |                              |              | oad Type  | -                  |                           |         | -                      |                 |
| Level                                     | Trib W                       |              | Dea       |                    | Live                      | 9       | _                      | ow              |
| Roof                                      |                              | 17 ft        | 16 psf    | 272 plf            |                           |         | 30 psf                 | 510 pl          |
| Walls                                     |                              | 27 ft        | 12 psf    | 324 plf            |                           |         |                        |                 |
| Slab                                      |                              | 6 ft         | 75 psf    | 413 plf            | 40 psf                    | 220 plf |                        |                 |
| Grade E                                   | 3M.+1' Ste                   | m            |           | 400 plf            |                           |         |                        |                 |
| Total                                     |                              |              |           | 1409 plf           |                           | 220 plf |                        | 510 pl          |
| Load Ca                                   | ase:                         |              |           |                    |                           |         |                        |                 |
| DL+LL =                                   | =                            |              |           | 1629 lb            |                           |         |                        |                 |
| DL+0.75                                   | 5(LL+SL) =                   | =            |           | 1956 lb            | Controls                  |         |                        |                 |
| Max Pile                                  | e Spacing                    | =            |           | 10.2 ft            |                           |         |                        |                 |
|                                           |                              | 6 ft         | 15 psf    | 90 plf             | 60 psf                    | 360 plf |                        |                 |
| Level                                     | Trib W                       | latin        | Dea       | G                  | Live                      | •       | On                     | ow              |
| Deck                                      |                              |              | -         | -                  | 60 psf                    | 360 plf |                        |                 |
| Walls                                     |                              | 8 ft         | 12 psf    | 96 plf             | 40 6                      | 000 10  |                        |                 |
| Slab                                      |                              | 6 ft         | 75 psf    | 413 plf            | 40 psf                    | 220 plf |                        |                 |
| Grade E                                   | 3M.+1' Ste                   | m            |           | 400 plf            |                           |         |                        |                 |
|                                           |                              |              |           | 999 plf            |                           | 580 plf |                        | 0 pl            |
| Total                                     |                              |              |           |                    |                           |         |                        |                 |
| Total<br>Load Ca                          | ase:                         |              |           |                    |                           |         |                        |                 |
|                                           |                              |              |           | 1579 lb            | Controls                  |         |                        |                 |
| Load Ca<br>DL+LL =                        |                              | =            |           | 1579 lb<br>1434 lb | Controls                  |         |                        |                 |
| Load Ca<br>DL+LL =<br>DL+0.75             | =                            |              |           |                    | Controls                  |         |                        |                 |
| Load Ca<br>DL+LL =<br>DL+0.75             | =<br>5(LL+SL) =              |              |           | 1434 lb            | Controls                  |         |                        |                 |
| Load Ca<br>DL+LL =<br>DL+0.75             | =<br>5(LL+SL) =              |              |           | 1434 lb            | Controls                  |         |                        |                 |
| Load Ca<br>DL+LL =<br>DL+0.75             | =<br>5(LL+SL) =              |              |           | 1434 lb            | Controls                  |         |                        |                 |
| Load Ca<br>DL+LL =<br>DL+0.75             | =<br>5(LL+SL) =              |              |           | 1434 lb            | Controls                  |         |                        |                 |
| Load Ca<br>DL+LL =<br>DL+0.75             | =<br>5(LL+SL) =              |              |           | 1434 lb            | Controls                  |         |                        |                 |
| Load Ca<br>DL+LL =<br>DL+0.75<br>Max Pile | =<br>5(LL+SL) =<br>e Spacing | =            | neers LLC | 1434 lb            | Controls<br>Intrachat Res | sidence | Project #              | 22252.01        |
| Load Ca<br>DL+LL =<br>DL+0.75<br>Max Pile | =<br>5(LL+SL) =<br>e Spacing | =<br>ng Engi | neers LLC | 1434 lb            |                           |         | Project #<br>Designer: | 22252.01<br>TVM |




Lic. # : KW-06005835 DESCRIPTION: Grade Beam Grid I/4-5

#### **CODE REFERENCES**

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16

#### Material Properties



#### **Cross Section & Reinforcing Details**

Rectangular Section, Width = 16.0 in, Height = 18.0 in Span #1 Reinforcing....

2-#5 at 3.50 in from Bottom, from 0.0 to 10.670 ft in this span

2-#5 at 2.50 in from Top, from 0.0 to 10.670 ft in this span

#### Beam self weight calculated and added to loads

Point Load : D = 2.860, L = 3.0, S = 1.0 k @ 5.330 ft, (IB8 Load)

| DESIGN SUMMARY                                                                                                             |                                                      | gn OK      |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------|
| Mu : Applied28.224 k-ftMax Upward Transient Deflection0.00Mn * Phi : Allowable40.431 k-ftMax Downward Total Deflection0.01 | in Ratio =<br>in Ratio =<br>in Ratio =<br>in Ratio = | 8328 >=180 |

| Vertical Reactions       |           |           | Support notation : Far left is #1 |
|--------------------------|-----------|-----------|-----------------------------------|
| Load Combination         | Support 1 | Support 2 |                                   |
| Overall MAXimum          | 4.480     | 4.474     |                                   |
| Overall MINimum          | 0.500     | 0.500     |                                   |
| D Only                   | 2.978     | 2.976     |                                   |
| +D+L                     | 4.480     | 4.474     |                                   |
| +D+S                     | 3.479     | 3.475     |                                   |
| +D+0.750L                | 4.105     | 4.100     |                                   |
| +D+0.750L+0.750S         | 4.480     | 4.474     |                                   |
| +0.60D                   | 1.787     | 1.785     |                                   |
| L Only                   | 1.501     | 1.499     |                                   |
| S Only                   | 0.500     | 0.500     |                                   |
| Shear Stirrup Requiremer | nts       |           |                                   |

Entire Beam Span Length : Vu < PhiVc/2, Req'd Vs = Not Reqd 9.6.3.1, use #3 stirrups spaced at 0.000 in



#### **Concrete Beam**

#### Lic. # : KW-06005835 DESCRIPTION: Grade Beam Grid I/4-5

| Load Combination            |            |              |        | Location (ft)   | Bending          | Stress Results (k | -ft)            |                       |
|-----------------------------|------------|--------------|--------|-----------------|------------------|-------------------|-----------------|-----------------------|
| Segment                     |            | Sp           | an #   | along Beam      | Mu : Max         | Phi*Mnx           | Stress Rati     | 0                     |
| MAXimum BENDING Envelope    |            |              |        |                 |                  |                   |                 |                       |
| Span # 1                    |            |              | 1      | 10.670          | 28.22            | 40.43             | 0.70            |                       |
| +1.40D                      |            |              |        |                 |                  |                   |                 |                       |
| Span # 1                    |            |              | 1      | 10.670          | 16.45            | 40.43             | 0.41            |                       |
| +1.20D+1.60L                |            |              |        |                 |                  |                   |                 |                       |
| Span # 1                    |            |              | 1      | 10.670          | 26.89            | 40.43             | 0.67            |                       |
| +1.20D+1.60L+0.50S          |            |              |        | 40 (70          |                  |                   |                 |                       |
| Span # 1                    |            |              | 1      | 10.670          | 28.22            | 40.43             | 0.70            |                       |
| +1.20D+L                    |            |              |        | 40 (70          | 00.00            | 10.10             | 0.55            |                       |
| Span # 1                    |            |              | 1      | 10.670          | 22.09            | 40.43             | 0.55            |                       |
| +1.20D                      |            |              | 1      | 10 / 70         | 11.10            | 10.10             | 0.05            |                       |
| Span # 1                    |            |              | I      | 10.670          | 14.10            | 40.43             | 0.35            |                       |
| +1.20D+L+1.60S              |            |              | 1      | 10 / 70         | 27.27            | 40.42             | 0.45            |                       |
| Span # 1                    |            |              | I      | 10.670          | 26.36            | 40.43             | 0.65            |                       |
| +1.20D+1.60S                |            |              | 1      | 10 ( 70         | 10.24            | 40.42             | 0.45            |                       |
| Span # 1                    |            |              | I      | 10.670          | 18.36            | 40.43             | 0.45            |                       |
| +1.20D+L+0.50S              |            |              | 1      | 10.670          | 23.43            | 40.43             | 0.58            |                       |
| Span # 1<br>+0.90D          |            |              | I      | 10.070          | 23.43            | 40.45             | 0.56            |                       |
| Span # 1                    |            |              | 1      | 10.670          | 10.57            | 40.43             | 0.26            |                       |
| +1.20D+L+0.20S              |            |              | 1      | 10.070          | 10.37            | 40.45             | 0.20            |                       |
| Span # 1                    |            |              | 1      | 10.670          | 22.63            | 40.43             | 0.56            |                       |
| 1                           |            |              | 1      | 10.070          | 22.03            | 40.45             | 0.50            |                       |
| Overall Maximum Deflections | S          |              |        |                 |                  |                   |                 |                       |
| Load Combination Sp         | pan Max. " | -" Defl (in) | Locati | on in Span (ft) | Load Combination | Max               | . "+" Defl (in) | Location in Span (ft) |
| +D+0.750L+0.750S            | 1 0        | .0154        |        | 5.335           |                  |                   | 0.0000          | 0.000                 |

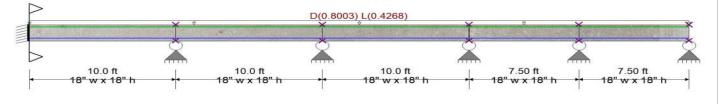
Printed: 14 JUN 2022, 1:16PM File: Calcs.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS



Project Title: Engineer: Project ID: Project Descr:

Printed: 17 JUN 2022, 12:50PM File: Calcs -Updated.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS


DESCRIPTION: Grade Beam Grid G (Continuous)

#### **CODE REFERENCES**

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16

#### **Material Properties**





#### **Cross Section & Reinforcing Details**

Rectangular Section, Width = 18.0 in, Height = 18.0 in Span #1 Reinforcing....

3-#4 at 3.310 in from Bottom, from 0.0 to 10.0 ft in this span Span #2 Reinforcing....

2-#5 at 3.310 in from Bottom, from 0.0 to 10.0 ft in this span Span #3 Reinforcing....

2-#5 at 3.310 in from Bottom, from 0.0 to 10.0 ft in this span Span #4 Reinforcing....

2-#5 at 3.310 in from Bottom, from 0.0 to 7.50 ft in this span Span #5 Reinforcing.... 2-#5 at 3.310 in from Bottom, from 0.0 to 7.50 ft in this span 3-#4 at 2.560 in from Top, from 0.0 to 10.0 ft in this span

2-#5 at 2.560 in from Top, from 0.0 to 10.0 ft in this span

2-#5 at 2.560 in from Top, from 0.0 to 10.0 ft in this span

2-#5 at 2.560 in from Top, from 0.0 to 7.50 ft in this span

2-#5 at 2.560 in from Top, from 0.0 to 7.50 ft in this span

Design OK

Beam self weight calculated and added to loads Loads on all spans...

D = 0.0750, L = 0.040

Uniform Load on ALL spans : D = 0.0750, L = 0.040 ksf, Tributary Width = 10.670 ft

#### **DESIGN SUMMARY**

| Maximum Bending Stress Ratio = | <b>0.412</b> : 1 | Maximum Deflection                |                                 |
|--------------------------------|------------------|-----------------------------------|---------------------------------|
| Section used for this span     | Typical Section  | Max Downward Transient Deflection | 0.002 in Ratio = 64910 >= 360   |
| Mu : Applied                   | -19.098 k-ft     | Max Upward Transient Deflection   | -0.001 in Ratio = 107912 >= 360 |
| Mn * Phi : Allowable           | 46.390 k-ft      | Max Downward Total Deflection     | 0.004 in Ratio = 28069 >= 180   |
| Location of maximum on span    | 0.000 ft         | Max Upward Total Deflection       | 0.000  in Ratio = 0 < 180.0     |
| Span # where maximum occurs    | Span # 1         |                                   |                                 |
|                                |                  |                                   |                                 |

| Vertical Reactions |           | Support notation : Far left is #1 |           |           |           |           |  |
|--------------------|-----------|-----------------------------------|-----------|-----------|-----------|-----------|--|
| Load Combination   | Support 1 | Support 2                         | Support 3 | Support 4 | Support 5 | Support 6 |  |
| Overall MAXimum    | 8.174     | 15.791                            | 16.447    | 14.156    | 13.091    | 4.889     |  |
| Overall MINimum    | 0.004     | -0.017                            | 0.060     | 0.081     | -0.027    | 0.004     |  |
| +D+H               | 5.657     | 11.168                            | 11.604    | 9.750     | 9.103     | 3.411     |  |



Lic. # : KW-06005835 DESCRIPTION: Grade Beam Grid G (Continuous)

| Vertical Reactions           |           |           | Support n | otation : Far lef | ft is #1  |           |  |
|------------------------------|-----------|-----------|-----------|-------------------|-----------|-----------|--|
| Load Combination             | Support 1 | Support 2 | Support 3 | Support 4         | Support 5 | Support 6 |  |
| +D+L+H, LL Comb Run (****L)  | 5.661     | 11.151    | 11.663    | 9.441             | 11.177    | 4.799     |  |
| +D+L+H, LL Comb Run (***L*)  | 5.644     | 11.219    | 11.424    | 11.476            | 10.882    | 3.248     |  |
| +D+L+H, LL Comb Run (***LL)  | 5.648     | 11.202    | 11.484    | 11.167            | 12.956    | 4.636     |  |
| +D+L+H, LL Comb Run (**L**)  | 5.750     | 10.794    | 13.980    | 12.349            | 8.590     | 3.497     |  |
| +D+L+H, LL Comb Run (**L*L)  | 5.755     | 10.777    | 14.040    | 12.040            | 10.665    | 4.885     |  |
| +D+L+H, LL Comb Run (**LL*)  | 5.737     | 10.845    | 13.801    | 14.075            | 10.369    | 3.334     |  |
| +D+L+H, LL Comb Run (**LLL)  | 5.742     | 10.828    | 13.861    | 13.766            | 12.444    | 4.722     |  |
| +D+L+H, LL Comb Run (*L***)  | 5.295     | 13.682    | 14.011    | 9.347             | 9.238     | 3.389     |  |
| +D+L+H, LL Comb Run (*L**L)  | 5.299     | 13.664    | 14.070    | 9.038             | 11.312    | 4.777     |  |
| +D+L+H, LL Comb Run (*L*L*)  | 5.282     | 13.733    | 13.832    | 11.073            | 11.016    | 3.226     |  |
| +D+L+H, LL Comb Run (*L*LL)  | 5.287     | 13.716    | 13.891    | 10.764            | 13.091    | 4.614     |  |
| +D+L+H, LL Comb Run (*LL**)  | 5.389     | 13.307    | 16.387    | 11.946            | 8.725     | 3.474     |  |
| +D+L+H, LL Comb Run (*LL*L)  | 5.393     | 13.290    | 16.447    | 11.637            | 10.800    | 4.862     |  |
| +D+L+H, LL Comb Run (*LLL*)  | 5.376     | 13.359    | 16.208    | 13.672            | 10.504    | 3.311     |  |
| +D+L+H, LL Comb Run (*LLLL)  | 5.380     | 13.341    | 16.268    | 13.363            | 12.579    | 4.699     |  |
| +D+L+H, LL Comb Run (L****)  | 8.076     | 13.226    | 11.336    | 9.830             | 9.076     | 3.416     |  |
| +D+L+H, LL Comb Run (L***L)  | 8.081     | 13.209    | 11.395    | 9.522             | 11.150    | 4.804     |  |
| +D+L+H, LL Comb Run (L**L*)  | 8.064     | 13.278    | 11.156    | 11.557            | 10.855    | 3.253     |  |
| +D+L+H, LL Comb Run (L**LL)  | 8.068     | 13.261    | 11.216    | 11.248            | 12.929    | 4.641     |  |
| +D+L+H, LL Comb Run (L*L**)  | 8.170     | 12.852    | 13.712    | 12.429            | 8.563     | 3.501     |  |
| +D+L+H, LL Comb Run (L*L*L)  | 8.174     | 12.835    | 13.772    | 12.121            | 10.638    | 4.889     |  |
| +D+L+H, LL Comb Run (L*LL*)  | 8.157     | 12.903    | 13.533    | 14.156            | 10.342    | 3.338     |  |
| +D+L+H, LL Comb Run (L*LLL)  | 8.161     | 12.886    | 13.593    | 13.847            | 12.417    | 4.726     |  |
| +D+L+H, LL Comb Run (LL***)  | 7.715     | 15.740    | 13.743    | 9.427             | 9.211     | 3.393     |  |
| +D+L+H, LL Comb Run (LL**L)  | 7.719     | 15.723    | 13.802    | 9.119             | 11.285    | 4.781     |  |
| +D+L+H, LL Comb Run (LL*L*)  | 7.702     | 15.791    | 13.564    | 11.153            | 10.989    | 3.230     |  |
| +D+L+H, LL Comb Run (LL*LL)  | 7.706     | 15.774    | 13.623    | 10.845            | 13.064    | 4.618     |  |
| +D+L+H, LL Comb Run (LLL**)  | 7.808     | 15.365    | 16.119    | 12.026            | 8.698     | 3.479     |  |
| +D+L+H, LL Comb Run (LLL*L)  | 7.813     | 15.348    | 16.179    | 11.718            | 10.773    | 4.867     |  |
| +D+L+H, LL Comb Run (LLLL*)  | 7.796     | 15.417    | 15.940    | 13.752            | 10.477    | 3.316     |  |
| +D+L+H, LL Comb Run (LLLLL)  | 7.800     | 15.400    | 16.000    | 13.444            | 12.552    | 4.704     |  |
| +D+Lr+H, LL Comb Run (****L) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (***L*) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (***LL) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (**L**) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (**L*L) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (**LL*) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (**LLL) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (*L***) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (*L**L) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (*L*L*) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (*L*LL) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (*LL**) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (*LL*L) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (*LLL*) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (*LLLL) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (L****) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (L***L) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (L**L*) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (L**LL) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (L*L**) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (L*L*L) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (L*LL*) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (L*LLL) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (LL***) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (LL**L) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (LL*L*) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (LL*LL) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
| +D+Lr+H, LL Comb Run (LLL**) | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |  |
|                              | 0.007     |           |           |                   |           | 2         |  |



Lic. # : KW-06005835

Printed: 17 JUN 2022, 12:50PM File: Calcs -Updated.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

| Vertical Reactions                                                       |                |                  | Support n        | otation : Far lef | ft is #1        |                |
|--------------------------------------------------------------------------|----------------|------------------|------------------|-------------------|-----------------|----------------|
| Load Combination                                                         | Support 1      | Support 2        | Support 3        | Support 4         | Support 5       | Support 6      |
| +D+Lr+H, LL Comb Run (LLL*L)                                             | 5.657          | 11.168           | 11.604           | 9.750             | 9.103           | 3.411          |
| +D+Lr+H, LL Comb Run (LLLL*)                                             | 5.657          | 11.168           | 11.604           | 9.750             | 9.103           | 3.411          |
| +D+Lr+H, LL Comb Run (LLLLL)                                             | 5.657          | 11.168           | 11.604           | 9.750             | 9.103           | 3.411          |
| +D+S+H                                                                   | 5.657          | 11.168           | 11.604           | 9.750             | 9.103           | 3.411          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 5.660          | 11.155           | 11.648           | 9.518             | 10.659          | 4.452          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 5.647          | 11.207           | 11.469           | 11.044            | 10.437          | 3.289          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 5.650          | 11.194           | 11.514           | 10.813            | 11.993          | 4.330          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 5.727          | 10.888           | 13.386           | 11.699            | 8.718           | 3.475          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 5.730          | 10.875           | 13.431           | 11.468            | 10.274          | 4.516          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 5.717          | 10.926           | 13.252           | 12.994            | 10.053          | 3.353          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 5.720          | 10.913           | 13.297           | 12.762            | 11.608          | 4.394          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 5.386          | 13.053           | 13.409           | 9.447             | 9.204           | 3.394          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 5.389          | 13.040           | 13.454           | 9.216             | 10.760          | 4.436          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 5.376          | 13.092           | 13.275           | 10.742            | 10.538          | 3.272          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 5.379          | 13.079           | 13.319           | 10.511            | 12.094          | 4.313          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 5.456          | 12.773           | 15.192           | 11.397            | 8.820           | 3.459          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 5.459          | 12.760           | 15.236           | 11.165            | 10.376          | 4.500          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 5.446          | 12.811           | 15.057           | 12.691            | 10.154          | 3.336          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 5.449          | 12.798           | 15.102           | 12.460            | 11.710          | 4.377          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 7.471          | 12.712           | 11.403           | 9.810             | 9.083           | 3.415          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 7.475          | 12.699           | 11.447           | 9.579             | 10.638          | 4.456          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 7.462          | 12.750           | 11.268           | 11.105            | 10.417          | 3.292          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 7.465          | 12.737           | 11.313           | 10.873            | 11.973          | 4.333          |
| +D+0.750Lr+0.750L+H, LL Comb Run (<br>+D+0.750Lr+0.750L+H, LL Comb Run ( | 7.542          | 12.431<br>12.418 | 13.185<br>13.230 | 11.760<br>11.528  | 8.698<br>10.254 | 3.479<br>4.520 |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 7.545<br>7.532 | 12.410           | 13.230           | 13.054            | 10.234          | 3.356          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 7.532          | 12.470           | 13.051           | 12.823            | 11.588          | 4.398          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 7.333          | 14.597           | 13.208           | 9.508             | 9.184           | 3.398          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 7.200          | 14.584           | 13.253           | 9.276             | 10.740          | 4.439          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 7.191          | 14.635           | 13.074           | 10.803            | 10.518          | 3.276          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 7.194          | 14.622           | 13.118           | 10.571            | 12.074          | 4.317          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 7.270          | 14.316           | 14.991           | 11.457            | 8.799           | 3.462          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 7.274          | 14.303           | 15.035           | 11.226            | 10.355          | 4.503          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 7.261          | 14.355           | 14.856           | 12.752            | 10.133          | 3.340          |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 7.264          | 14.342           | 14.901           | 12.520            | 11.689          | 4.381          |
| +D+0.750L+0.750S+H, LL Comb Run (*                                       | 5.660          | 11.155           | 11.648           | 9.518             | 10.659          | 4.452          |
| +D+0.750L+0.750S+H, LL Comb Run (*                                       | 5.647          | 11.207           | 11.469           | 11.044            | 10.437          | 3.289          |
| +D+0.750L+0.750S+H, LL Comb Run (*                                       | 5.650          | 11.194           | 11.514           | 10.813            | 11.993          | 4.330          |
| +D+0.750L+0.750S+H, LL Comb Run (*                                       | 5.727          | 10.888           | 13.386           | 11.699            | 8.718           | 3.475          |
| +D+0.750L+0.750S+H, LL Comb Run (*                                       | 5.730          | 10.875           | 13.431           | 11.468            | 10.274          | 4.516          |
| +D+0.750L+0.750S+H, LL Comb Run (*                                       | 5.717          | 10.926           | 13.252           | 12.994            | 10.053          | 3.353          |
| +D+0.750L+0.750S+H, LL Comb Run (*                                       | 5.720          | 10.913           | 13.297           | 12.762            | 11.608          | 4.394          |
| +D+0.750L+0.750S+H, LL Comb Run (*                                       | 5.386          | 13.053           | 13.409           | 9.447             | 9.204           | 3.394          |
| +D+0.750L+0.750S+H, LL Comb Run (*                                       | 5.389          | 13.040           | 13.454           | 9.216             | 10.760          | 4.436          |
| +D+0.750L+0.750S+H, LL Comb Run (*                                       | 5.376          | 13.092           | 13.275           | 10.742            | 10.538          | 3.272          |
| +D+0.750L+0.750S+H, LL Comb Run (*                                       | 5.379          | 13.079           | 13.319           | 10.511            | 12.094          | 4.313          |
| +D+0.750L+0.750S+H, LL Comb Run (*                                       | 5.456          | 12.773           | 15.192           | 11.397            | 8.820           | 3.459          |
| +D+0.750L+0.750S+H, LL Comb Run (*                                       | 5.459          | 12.760           | 15.236           | 11.165            | 10.376          | 4.500          |
| +D+0.750L+0.750S+H, LL Comb Run (*                                       | 5.446          | 12.811           | 15.057           | 12.691            | 10.154          | 3.336          |
| +D+0.750L+0.750S+H, LL Comb Run (*                                       | 5.449          | 12.798           | 15.102           | 12.460            | 11.710          | 4.377          |
| +D+0.750L+0.750S+H, LL Comb Run (L                                       | 7.471          | 12.712           | 11.403           | 9.810             | 9.083           | 3.415          |
| +D+0.750L+0.750S+H, LL Comb Run (L                                       | 7.475          | 12.699           | 11.447           | 9.579<br>11.105   | 10.638          | 4.456          |
| +D+0.750L+0.750S+H, LL Comb Run (L                                       | 7.462          | 12.750           | 11.268           | 11.105            | 10.417          | 3.292          |
| +D+0.750L+0.750S+H, LL Comb Run (L                                       | 7.465          | 12.737           | 11.313           | 10.873            | 11.973          | 4.333          |
| +D+0.750L+0.750S+H, LL Comb Run (L<br>+D+0.750L+0.750S+H, LL Comb Run (L | 7.542<br>7.545 | 12.431           | 13.185           | 11.760<br>11.528  | 8.698<br>10.254 | 3.479<br>4.520 |
| +D+0.750L+0.750S+H, LL Comb Run (L<br>+D+0.750L+0.750S+H, LL Comb Run (L | 7.545          | 12.418<br>12.470 | 13.230<br>13.051 | 11.528            | 10.254          | 4.520<br>3.356 |
| +D+0.750L+0.750S+H, LL Comb Run (L                                       | 7.532          | 12.470           | 13.051           | 13.054            | 10.032          | 3.300<br>4.398 |
| +D+0.750L+0.750S+H, LL Comb Run (L                                       | 7.335          | 14.597           | 13.098           | 9.508             | 9.184           | 4.398<br>3.398 |
|                                                                          | 7.200          | 17.377           | 10.200           | 7.000             | 7.104           | 0.070          |



| Vertical Reactions                 |                |           | Support no | otation : Far lef | t is #1         |                |  |
|------------------------------------|----------------|-----------|------------|-------------------|-----------------|----------------|--|
| Load Combination                   | Support 1      | Support 2 | Support 3  | Support 4         | Support 5       | Support 6      |  |
| +D+0.750L+0.750S+H, LL Comb Run (L | 7.203          | 14.584    | 13.253     | 9.276             | 10.740          | 4.439          |  |
| +D+0.750L+0.750S+H, LL Comb Run (L | 7.191          | 14.635    | 13.074     | 10.803            | 10.518          | 3.276          |  |
| +D+0.750L+0.750S+H, LL Comb Run (L | 7.194          | 14.622    | 13.118     | 10.571            | 12.074          | 4.317          |  |
| +D+0.750L+0.750S+H, LL Comb Run (L | 7.270          | 14.316    | 14.991     | 11.457            | 8.799           | 3.462          |  |
| +D+0.750L+0.750S+H, LL Comb Run (L | 7.274          | 14.303    | 15.035     | 11.226            | 10.355          | 4.503          |  |
| +D+0.750L+0.750S+H, LL Comb Run (L | 7.261          | 14.355    | 14.856     | 12.752            | 10.133          | 3.340          |  |
| +D+0.750L+0.750S+H, LL Comb Run (L | 7.264          | 14.342    | 14.901     | 12.520            | 11.689          | 4.381          |  |
| +D+0.60W+H                         | 5.657          | 11.168    | 11.604     | 9.750             | 9.103           | 3.411          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 5.660          | 11.155    | 11.648     | 9.518             | 10.659          | 4.452          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 5.647          | 11.207    | 11.469     | 11.044            | 10.437          | 3.289          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 5.650          | 11.194    | 11.514     | 10.813            | 11.993          | 4.330          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 5.727          | 10.888    | 13.386     | 11.699            | 8.718           | 3.475          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 5.730          | 10.875    | 13.431     | 11.468            | 10.274          | 4.516          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 5.717          | 10.926    | 13.252     | 12.994            | 10.053          | 3.353          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 5.720          | 10.913    | 13.297     | 12.762            | 11.608          | 4.394          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 5.386          | 13.053    | 13.409     | 9.447             | 9.204           | 3.394          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 5.389          | 13.040    | 13.454     | 9.216             | 10.760          | 4.436          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 5.376          | 13.092    | 13.275     | 10.742            | 10.538          | 3.272          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 5.379          | 13.079    | 13.319     | 10.511            | 12.094          | 4.313          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 5.456          | 12.773    | 15.192     | 11.397            | 8.820           | 3.459          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 5.459          | 12.760    | 15.236     | 11.165            | 10.376          | 4.500          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 5.446          | 12.811    | 15.057     | 12.691            | 10.154          | 3.336          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 5.449          | 12.798    | 15.102     | 12.460            | 11.710          | 4.377          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 7.471          | 12.712    | 11.403     | 9.810             | 9.083           | 3.415          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 7.475          | 12.699    | 11.447     | 9.579             | 10.638          | 4.456          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 7.462          | 12.750    | 11.268     | 11.105            | 10.417          | 3.292          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 7.465          | 12.737    | 11.313     | 10.873            | 11.973          | 4.333          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 7.542          | 12.431    | 13.185     | 11.760            | 8.698           | 3.479          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 7.545          | 12.418    | 13.230     | 11.528            | 10.254          | 4.520          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 7.532          | 12.470    | 13.051     | 13.054            | 10.032          | 3.356          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 7.535          | 12.457    | 13.096     | 12.823            | 11.588          | 4.398          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 7.200          | 14.597    | 13.208     | 9.508             | 9.184           | 3.398          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 7.203          | 14.584    | 13.253     | 9.276             | 10.740          | 4.439          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 7.191          | 14.635    | 13.074     | 10.803            | 10.518          | 3.276          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 7.194          | 14.622    | 13.118     | 10.571            | 12.074          | 4.317          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 7.270          | 14.316    | 14.991     | 11.457            | 8.799           | 3.462          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 7.274          | 14.303    | 15.035     | 11.437            | 10.355          | 4.503          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 7.274          | 14.303    | 14.856     | 12.752            | 10.333          | 3.340          |  |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 7.264          | 14.355    | 14.850     | 12.752            | 11.689          | 4.381          |  |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 5.660          | 14.342    | 11.648     | 9.518             | 10.659          | 4.301          |  |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 5.647          | 11.155    | 11.469     | 11.044            | 10.037          | 3.289          |  |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 5.650          | 11.207    | 11.409     | 10.813            | 11.993          | 4.330          |  |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 5.000          | 10.888    | 13.386     | 10.013            | 8.718           | 4.330<br>3.475 |  |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 5.727          | 10.888    | 13.380     | 11.699            | 8.718<br>10.274 | 3.475<br>4.516 |  |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 5.730          | 10.875    | 13.451     | 12.994            | 10.274          | 3.353          |  |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 5.720          | 10.920    | 13.252     | 12.762            | 11.608          | 4.394          |  |
| +D+0.750L+0.750S+0.450W+H, LL Comb |                |           |            |                   |                 |                |  |
|                                    | 5.386<br>5.300 | 13.053    | 13.409     | 9.447             | 9.204           | 3.394          |  |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 5.389          | 13.040    | 13.454     | 9.216             | 10.760          | 4.436          |  |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 5.376          | 13.092    | 13.275     | 10.742            | 10.538          | 3.272          |  |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 5.379          | 13.079    | 13.319     | 10.511            | 12.094          | 4.313          |  |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 5.456          | 12.773    | 15.192     | 11.397            | 8.820           | 3.459          |  |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 5.459          | 12.760    | 15.236     | 11.165            | 10.376          | 4.500          |  |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 5.446          | 12.811    | 15.057     | 12.691            | 10.154          | 3.336          |  |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 5.449          | 12.798    | 15.102     | 12.460            | 11.710          | 4.377          |  |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 7.471          | 12.712    | 11.403     | 9.810             | 9.083           | 3.415          |  |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 7.475          | 12.699    | 11.447     | 9.579             | 10.638          | 4.456          |  |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 7.462          | 12.750    | 11.268     | 11.105            | 10.417          | 3.292          |  |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 7.465          | 12.737    | 11.313     | 10.873            | 11.973          | 4.333          |  |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 7.542          | 12.431    | 13.185     | 11.760            | 8.698           | 3.479          |  |



Lic. # : KW-06005835

| Vertical Reactions                 | Cunned 1  | Support 2 |           | otation : Far lef |           | Support ( |
|------------------------------------|-----------|-----------|-----------|-------------------|-----------|-----------|
| Load Combination                   | Support 1 | Support 2 | Support 3 | Support 4         | Support 5 | Support 6 |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 7.545     | 12.418    | 13.230    | 11.528            | 10.254    | 4.520     |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 7.532     | 12.470    | 13.051    | 13.054            | 10.032    | 3.356     |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 7.535     | 12.457    | 13.096    | 12.823            | 11.588    | 4.398     |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 7.200     | 14.597    | 13.208    | 9.508             | 9.184     | 3.398     |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 7.203     | 14.584    | 13.253    | 9.276             | 10.740    | 4.439     |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 7.191     | 14.635    | 13.074    | 10.803            | 10.518    | 3.276     |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 7.194     | 14.622    | 13.118    | 10.571            | 12.074    | 4.317     |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 7.270     | 14.316    | 14.991    | 11.457            | 8.799     | 3.462     |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 7.274     | 14.303    | 15.035    | 11.226            | 10.355    | 4.503     |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 7.261     | 14.355    | 14.856    | 12.752            | 10.133    | 3.340     |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 7.264     | 14.342    | 14.901    | 12.520            | 11.689    | 4.381     |
| +0.60D+0.60W+0.60H                 | 3.394     | 6.701     | 6.962     | 5.850             | 5.462     | 2.047     |
| +D+0.70E+0.60H                     | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 5.660     | 11.155    | 11.648    | 9.518             | 10.659    | 4.452     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 5.647     | 11.207    | 11.469    | 11.044            | 10.437    | 3.289     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 5.650     | 11.194    | 11.514    | 10.813            | 11.993    | 4.330     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 5.727     | 10.888    | 13.386    | 11.699            | 8.718     | 3.475     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 5.730     | 10.875    | 13.431    | 11.468            | 10.274    | 4.516     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 5.717     | 10.926    | 13.252    | 12.994            | 10.053    | 3.353     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 5.720     | 10.913    | 13.297    | 12.762            | 11.608    | 4.394     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 5.386     | 13.053    | 13.409    | 9.447             | 9.204     | 3.394     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 5.389     | 13.040    | 13.454    | 9.216             | 10.760    | 4.436     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 5.376     | 13.092    | 13.275    | 10.742            | 10.538    | 3.272     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 5.379     | 13.079    | 13.319    | 10.511            | 12.094    | 4.313     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 5.456     | 12.773    | 15.192    | 11.397            | 8.820     | 3.459     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 5.459     | 12.760    | 15.236    | 11.165            | 10.376    | 4.500     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 5.446     | 12.811    | 15.057    | 12.691            | 10.154    | 3.336     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 5.449     | 12.798    | 15.102    | 12.460            | 11.710    | 4.377     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 7.471     | 12.712    | 11.403    | 9.810             | 9.083     | 3.415     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 7.475     | 12.699    | 11.447    | 9.579             | 10.638    | 4.456     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 7.462     | 12.750    | 11.268    | 11.105            | 10.417    | 3.292     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 7.465     | 12.737    | 11.313    | 10.873            | 11.973    | 4.333     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 7.542     | 12.431    | 13.185    | 11.760            | 8.698     | 3.479     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 7.545     | 12.418    | 13.230    | 11.528            | 10.254    | 4.520     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 7.532     | 12.470    | 13.051    | 13.054            | 10.032    | 3.356     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 7.535     | 12.457    | 13.096    | 12.823            | 11.588    | 4.398     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 7.200     | 14.597    | 13.208    | 9.508             | 9.184     | 3.398     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 7.203     | 14.584    | 13.253    | 9.276             | 10.740    | 4.439     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 7.191     | 14.635    | 13.074    | 10.803            | 10.518    | 3.276     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 7.194     | 14.622    | 13.118    | 10.571            | 12.074    | 4.317     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 7.270     | 14.316    | 14.991    | 11.457            | 8.799     | 3.462     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 7.274     | 14.303    | 15.035    | 11.226            | 10.355    | 4.503     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 7.261     | 14.355    | 14.856    | 12.752            | 10.133    | 3.340     |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 7.264     | 14.342    | 14.901    | 12.520            | 11.689    | 4.381     |
| +0.60D+0.70E+H                     | 3.394     | 6.701     | 6.962     | 5.850             | 5.462     | 2.047     |
| D Only                             | 5.657     | 11.168    | 11.604    | 9.750             | 9.103     | 3.411     |
| L Only, LL Comb Run (****L)        | 0.004     | -0.017    | 0.060     | -0.309            | 2.075     | 1.388     |
| L Only, LL Comb Run (***L*)        | -0.013    | 0.051     | -0.179    | 1.726             | 1.779     | -0.163    |
| L Only, LL Comb Run (***LL)        | -0.009    | 0.034     | -0.119    | 1.418             | 3.853     | 1.225     |
| L Only, LL Comb Run (**L**)        | 0.094     | -0.374    | 2.377     | 2.599             | -0.512    | 0.085     |
| L Only, LL Comb Run (**L*L)        | 0.098     | -0.391    | 2.436     | 2.290             | 1.562     | 1.474     |
| L Only, LL Comb Run (**LL*)        | 0.081     | -0.323    | 2.198     | 4.325             | 1.266     | -0.078    |
| L Only, LL Comb Run (**LLL)        | 0.085     | -0.340    | 2.257     | 4.016             | 3.341     | 1.310     |
| L Only, LL Comb Run (*L***)        | -0.362    | 2.513     | 2.407     | -0.403            | 0.135     | -0.022    |
| L Only, LL Comb Run (*L**L)        | -0.357    | 2.496     | 2.467     | -0.712            | 2.209     | 1.366     |
| L Only, LL Comb Run (*L*L*)        | -0.374    | 2.564     | 2.228     | 1.323             | 1.914     | -0.186    |
| L Only, LL Comb Run (*L*LL)        | -0.370    | 2.547     | 2.288     | 1.014             | 3.988     | 1.203     |
| L Only, LL Comb Run (*LL**)        | -0.268    | 2.139     | 4.784     | 2.196             | -0.378    | 0.063     |
|                                    |           |           |           |                   | 1.697     |           |



DESCRIPTION: Grade Beam Grid G (Continuous)

| Vertical Reactions                    |           |           | Support n | otation : Far let | ft is #1  |           |
|---------------------------------------|-----------|-----------|-----------|-------------------|-----------|-----------|
| Load Combination                      | Support 1 | Support 2 | Support 3 | Support 4         | Support 5 | Support 6 |
| L Only, LL Comb Run (*LLL*)           | -0.281    | 2.190     | 4.605     | 3.922             | 1.401     | -0.100    |
| L Only, LL Comb Run (*LLLL)           | -0.277    | 2.173     | 4.664     | 3.613             | 3.476     | 1.288     |
| L Only, LL Comb Run (L****)           | 2.420     | 2.058     | -0.268    | 0.081             | -0.027    | 0.004     |
| L Only, LL Comb Run (L***L)           | 2.424     | 2.041     | -0.208    | -0.228            | 2.048     | 1.393     |
| L Only, LL Comb Run (L**L*)           | 2.407     | 2.109     | -0.447    | 1.807             | 1.752     | -0.159    |
| L Only, LL Comb Run (L**LL)           | 2.411     | 2.092     | -0.387    | 1.498             | 3.826     | 1.230     |
| L Only, LL Comb Run (L*L**)           | 2.513     | 1.684     | 2.109     | 2.680             | -0.539    | 0.090     |
| L Only, LL Comb Run (L*L*L)           | 2.518     | 1.667     | 2.168     | 2.371             | 1.535     | 1.478     |
| L Only, LL Comb Run (L*LL*)           | 2.500     | 1.735     | 1.930     | 4.406             | 1.239     | -0.073    |
| L Only, LL Comb Run (L*LLL)           | 2.505     | 1.718     | 1.989     | 4.097             | 3.314     | 1.315     |
| L Only, LL Comb Run (LL***)           | 2.058     | 4.571     | 2.139     | -0.323            | 0.108     | -0.018    |
| L Only, LL Comb Run (LL**L)           | 2.062     | 4.554     | 2.199     | -0.631            | 2.182     | 1.370     |
| L Only, LL Comb Run (LL*L*)           | 2.045     | 4.623     | 1.960     | 1.404             | 1.887     | -0.181    |
| L Only, LL Comb Run (LL*LL)           | 2.050     | 4.606     | 2.020     | 1.095             | 3.961     | 1.207     |
| L Only, LL Comb Run (LLL**)           | 2.152     | 4.197     | 4.516     | 2.276             | -0.405    | 0.067     |
| L Only, LL Comb Run (LLL*L)           | 2.156     | 4.180     | 4.576     | 1.968             | 1.670     | 1.456     |
| L Only, LL Comb Run (LLLL*)           | 2.139     | 4.248     | 4.337     | 4.003             | 1.374     | -0.096    |
| L Only, LL Comb Run (LLLLL)<br>H Only | 2.143     | 4.231     | 4.396     | 3.694             | 3.449     | 1.292     |

| Load Combination                  | Span<br>Number | Distance<br>(ft) | 'd'<br>(in)    | Vu<br>Actual | (k)<br>Design | Mu<br>(k-ft) | d*Vu/Mu | Phi*Vc<br>(k) | Comment                      | Phi*Vs<br>(k) | Phi*Vn<br>(k) | Spacing (i<br>Req'd Su |     |
|-----------------------------------|----------------|------------------|----------------|--------------|---------------|--------------|---------|---------------|------------------------------|---------------|---------------|------------------------|-----|
| +1.20D+1.60L+0.50S+1.60H, LL Comb |                | 0.00             | 15.44          | 10.82        | 10.82         | 19.10        | 0.73    | 22.51         | Vu < PhiVc/2                 | lot Regd 9.6. | 22.5          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb |                | 0.00<br>1.36     | 15.44<br>15.44 | 8.04         | 8.04          | 6.24         | 1.00    | 22.51         | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Regd 9.6. | 22.5<br>22.8  | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb |                | 2.73             | 15.44<br>14.69 | 5.27         | 6.04<br>5.27  | 2.83         | 1.00    | 22.82         | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Regd 9.6. | 22.0<br>21.8  | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb |                | 4.09             | 14.69          | 2.49         | 2.49          | 8.12         | 0.38    | 21.70         | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Read 9.6. | 21.0          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb |                | 5.45             | 14.69          | -1.18        | 1.18          | 4.28         | 0.30    | 21.00         | Vu < PhiVc/2                 | lot Reqd 9.6. | 21.1          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | -              | 6.82             | 14.69          | -3.81        | 3.81          | 4.72         | 0.99    | 21.02         | Vu < PhiVc/2                 | lot Regd 9.6. | 21.8          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | -              | 8.18             | 15.44          | -6.59        | 6.59          | 2.37         | 1.00    | 22.82         | Vu < PhiVc/2                 | lot Regd 9.6. | 22.8          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb |                | 9.55             | 15.44          | -9.36        | 9.36          | 13.24        | 0.91    | 22.72         | Vu < PhiVc/2                 | lot Regd 9.6. | 22.7          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | -              | 10.91            | 15.44          | 8.66         | 8.66          | 8.99         | 1.00    | 22.85         | Vu < PhiVc/2                 | lot Regd 9.6. | 22.9          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | -              | 12.27            | 14.69          | 5.89         | 5.89          | 0.93         | 1.00    | 21.80         | Vu < PhiVc/2                 | lot Regd 9.6. | 21.8          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb |                | 13.64            | 14.69          | 3.11         | 3.11          | 7.06         | 0.54    | 21.27         | Vu < PhiVc/2                 | lot Read 9.6. | 21.3          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb |                | 15.00            | 14.69          | -0.56        | 0.56          | 4.09         | 0.17    | 20.83         | Vu < PhiVc/2                 | lot Read 9.6. | 20.8          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | 2              | 16.36            | 14.69          | -3.30        | 3.30          | 6.30         | 0.64    | 21.38         | Vu < PhiVc/2                 | lot Regd 9.6. | 21.4          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | 2              | 17.73            | 15.44          | -6.08        | 6.08          | 0.10         | 1.00    | 22.85         | Vu < PhiVc/2                 | lot Regd 9.6. | 22.9          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | 2              | 19.09            | 15.44          | -8.85        | 8.85          | 10.28        | 1.00    | 22.85         | Vu < PhiVc/2                 | lot Regd 9.6. | 22.9          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | 3              | 20.45            | 15.44          | 10.05        | 10.05         | 14.39        | 0.90    | 22.74         | Vu < PhiVc/2                 | lot Reqd 9.6. | 22.7          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | 3              | 21.82            | 15.44          | 7.27         | 7.27          | 2.58         | 1.00    | 22.85         | Vu < PhiVc/2                 | lot Reqd 9.6. | 22.9          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | 3              | 23.18            | 14.69          | 4.50         | 4.50          | 5.44         | 1.00    | 21.80         | Vu < PhiVc/2                 | lot Reqd 9.6. | 21.8          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | 3              | 24.55            | 14.69          | 1.72         | 1.72          | 9.69         | 0.22    | 20.89         | Vu < PhiVc/2                 | lot Reqd 9.6. | 20.9          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | J              | 25.91            | 14.69          | -1.91        | 1.91          | 10.00        | 0.23    | 20.91         | Vu < PhiVc/2                 | lot Reqd 9.6. | 20.9          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | 3              | 27.27            | 14.69          | -4.68        | 4.68          | 5.50         | 1.00    | 21.80         | Vu < PhiVc/2                 | lot Reqd 9.6. | 21.8          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | 3              | 28.64            | 15.44          | -7.46        | 7.46          | 2.78         | 1.00    | 22.85         | Vu < PhiVc/2                 | lot Reqd 9.6. | 22.9          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | 4              | 30.00            | 15.44          | 8.52         | 8.52          | 14.84        | 0.74    | 22.55         | Vu < PhiVc/2                 | lot Reqd 9.6. | 22.6          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | 4              | 31.02            | 15.44          | 6.43         | 6.43          | 7.19         | 1.00    | 22.85         | Vu < PhiVc/2                 | lot Reqd 9.6. | 22.9          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | т              | 32.05            | 15.44          | 4.35         | 4.35          | 1.68         | 1.00    | 22.85         | Vu < PhiVc/2                 | lot Reqd 9.6. | 22.9          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | т              | 33.07            | 14.69          | 2.27         | 2.27          | 1.71         | 1.00    | 21.80         | Vu < PhiVc/2                 | lot Reqd 9.6. | 21.8          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | т              | 34.09            | 14.69          | -1.13        | 1.13          | 3.57         | 0.39    | 21.09         | Vu < PhiVc/2                 | lot Reqd 9.6. | 21.1          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | т              | 35.11            | 14.69          | -3.21        | 3.21          | 1.35         | 1.00    | 21.80         | Vu < PhiVc/2                 | lot Reqd 9.6. | 21.8          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | т              | 36.14            | 15.44          | -5.29        | 5.29          | 2.99         | 1.00    | 22.85         | Vu < PhiVc/2                 | lot Reqd 9.6. | 22.9          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | -              | 37.16            | 15.44          | -7.37        | 7.37          | 9.46         | 1.00    | 22.85         | Vu < PhiVc/2                 | lot Reqd 9.6. | 22.9          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | J              | 38.18            | 15.44          | 7.86         | 7.86          | 6.26         | 1.00    | 22.85         | Vu < PhiVc/2                 | lot Reqd 9.6. | 22.9          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | J              | 39.20            | 14.69          | 5.77         | 5.77          | 0.71         | 1.00    | 21.80         | Vu < PhiVc/2                 | lot Reqd 9.6. | 21.8          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | J              | 40.23            | 14.69          | 3.69         | 3.69          | 5.55         | 0.82    | 21.59         | Vu < PhiVc/2                 | lot Reqd 9.6. | 21.6          | 0.0                    | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb | 5              | 41.25            | 14.69          | 1.61         | 1.61          | 8.26         | 0.24    | 20.92         | Vu < PhiVc/2                 | lot Reqd 9.6. | 20.9          | 0.0                    | 0.0 |
|                                   |                |                  |                |              |               |              |         |               |                              |               |               |                        |     |



Lic. # : KW-06005835

DESCRIPTION: Grade Beam Grid G (Continuous)

## **Detailed Shear Information**

| Load Combination                 | Span<br>Number | Distance<br>(ft) | 'd'<br>(in) | Vu<br>Actual | (k)<br>Design | Mu<br>(k-ft) | d*Vu/Mu | Phi*Vc<br>(k) | Comment      | Phi*Vs<br>(k) | Phi*Vn<br>(k) | Spacing (i<br>Req'd Sug | '   |
|----------------------------------|----------------|------------------|-------------|--------------|---------------|--------------|---------|---------------|--------------|---------------|---------------|-------------------------|-----|
| +1.20D+1.60L+0.50S+1.60H, LL Com | b 5            | 42.27            | 14.69       | -0.91        | 0.91          | 10.05        | 0.11    | 20.77         | Vu < PhiVc/2 | lot Regd 9.6. | 20.8          | 0.0                     | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Com | b 5            | 43.30            | 14.69       | -2.99        | 2.99          | 8.05         | 0.45    | 21.17         | Vu < PhiVc/2 | lot Reqd 9.6. | 21.2          | 0.0                     | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Com | b 5            | 44.32            | 14.69       | -5.07        | 5.07          | 3.93         | 1.00    | 21.80         | Vu < PhiVc/2 | lot Reqd 9.6. | 21.8          | 0.0                     | 0.0 |

#### **Maximum Forces & Stresses for Load Combinations**

| Load Combination                                          |        | Location (ft)  | Bending          | Stress Results (k | -ft )        |  |
|-----------------------------------------------------------|--------|----------------|------------------|-------------------|--------------|--|
| Segment                                                   | Span # | along Beam     | Mu : Max         | Phi*Mnx           | Stress Ratio |  |
| MAXimum BENDING Envelope                                  |        | along boalin   |                  |                   |              |  |
| Span # 1                                                  | 1      | 10.000         | -19.10           | 46.39             | 0.41         |  |
| Span # 2                                                  | 2      | 10.000         | -17.71           | 47.79             | 0.37         |  |
| Span # 3                                                  | 3      | 10.000         | -19.17           | 47.79             | 0.40         |  |
| Span # 4                                                  | 4      | 7.500          | -14.84           | 47.79             | 0.31         |  |
| Span # 5                                                  | 5      | 7.500          | -12.09           | 47.79             | 0.25         |  |
| +1.40D+1.60H                                              |        |                |                  |                   |              |  |
| Span # 1                                                  | 1      | 10.000         | -13.26           | 46.39             | 0.29         |  |
| Span # 2                                                  | 2      | 10.000         | -12.92           | 47.79             | 0.27         |  |
| Span # 3                                                  | 3      | 10.000         | -13.93           | 47.79             | 0.29         |  |
| Span # 4                                                  | 4      | 7.500          | -10.21           | 47.79             | 0.21         |  |
| Span # 5                                                  | 5      | 7.500          | -8.54            | 47.79             | 0.18         |  |
| +1.20D+1.60L+0.50S+1.60H, LL Comb Run (****L)             | 4      | 40.000         | 11.00            | 14.00             | 0.05         |  |
| Span # 1                                                  | 1      | 10.000         | -11.38           | 46.39             | 0.25         |  |
| Span # 2                                                  | 2      | 10.000         | -11.03           | 47.79             | 0.23         |  |
| Span # 3                                                  | 3      | 10.000         | -12.10           | 47.79<br>47.79    | 0.25         |  |
| Span # 4<br>Span # 5                                      | 4<br>5 | 7.500          | -8.98            |                   | 0.19         |  |
| span # 5<br>+1.20D+1.60L+0.50S+1.60H, LL Comb Run (***L*) | С      | 7.500          | 9.80             | 42.91             | 0.23         |  |
| Span # 1                                                  | 1      | 10.000         | -11.29           | 46.39             | 0.24         |  |
| Span # 2                                                  | 2      | 10.000         | -11.29<br>-11.21 | 40.39             | 0.24         |  |
| Span # 2<br>Span # 3                                      | 3      | 10.000         | -11.46           | 47.79             | 0.23         |  |
| Span # 4                                                  | 4      | 7.500          | -10.52           | 47.79             | 0.24         |  |
| Span # 5                                                  | 5      | 7.500          | -9.27            | 47.79             | 0.19         |  |
| +1.20D+1.60L+0.50S+1.60H, LL Comb Run (***LL)             | 0      | 7.000          | 7.27             | 11.17             | 0.17         |  |
| Span # 1                                                  | 1      | 10.000         | -11.32           | 46.39             | 0.24         |  |
| Span # 2                                                  | 2      | 10.000         | -11.16           | 47.79             | 0.23         |  |
| Span # 3                                                  | 3      | 10.000         | -11.62           | 47.79             | 0.24         |  |
| Span # 4                                                  | 4      | 7.500          | -10.51           | 47.79             | 0.22         |  |
| Span # 5                                                  | 5      | 7.500          | -11.82           | 47.79             | 0.25         |  |
| +1.20D+1.60L+0.50S+1.60H, LL Comb Run (**L**)             |        |                |                  |                   |              |  |
| Span # 1                                                  | 1      | 10.000         | -11.86           | 46.39             | 0.26         |  |
| Span # 2                                                  | 2      | 10.000         | -13.81           | 47.79             | 0.29         |  |
| Span # 3                                                  | 3      | 10.000         | -15.43           | 47.79             | 0.32         |  |
| Span # 4                                                  | 4      | 7.500          | -12.85           | 47.79             | 0.27         |  |
| Span # 5                                                  | 5      | 7.500          | 6.62             | 42.91             | 0.15         |  |
| +1.20D+1.60L+0.50S+1.60H, LL Comb Run (**L*L)             |        | 40.000         |                  |                   |              |  |
| Span # 1                                                  | 1      | 10.000         | -11.88           | 46.39             | 0.26         |  |
| Span # 2                                                  | 2      | 10.000         | -13.97           | 47.79             | 0.29         |  |
| Span # 3                                                  | 3      | 10.000         | -15.59           | 47.79             | 0.33         |  |
| Span # 4<br>Span # 5                                      | 4<br>5 | 7.500<br>7.500 | -12.26<br>10.22  | 47.79<br>42.91    | 0.26<br>0.24 |  |
| +1.20D+1.60L+0.50S+1.60H, LL Comb Run (**LL*)             | 5      | 7.500          | 10.22            | 42.91             | 0.24         |  |
| Span # 1                                                  | 1      | 10.000         | -11.79           | 46.39             | 0.25         |  |
| Span # 2                                                  | 2      | 10.000         | -13.35           | 47.79             | 0.23         |  |
| Span # 3                                                  | 3      | 10.000         | -14.96           | 47.79             | 0.31         |  |
| Span # 4                                                  | 4      | 7.500          | -14.62           | 47.79             | 0.31         |  |
| Span # 5                                                  | 5      | 7.500          | -8.25            | 47.79             | 0.17         |  |
| +1.20D+1.60L+0.50S+1.60H, LL Comb Run (**LLL)             | -      |                |                  |                   |              |  |
| Span # 1                                                  | 1      | 10.000         | -11.82           | 46.39             | 0.25         |  |
| Span # 2                                                  | 2      | 10.000         | -13.50           | 47.79             | 0.28         |  |
| Span # 3                                                  | 3      | 10.000         | -15.12           | 47.79             | 0.32         |  |
| Span # 4                                                  | 4      | 7.500          | -14.03           | 47.79             | 0.29         |  |
| Span # 5                                                  | 5      | 7.500          | -10.80           | 47.79             | 0.23         |  |
| +1.20D+1.60L+0.50S+1.60H, LL Comb Run (*L***)             |        |                |                  |                   |              |  |
| Span # 1                                                  | 1      | 10.000         | -13.30           | 46.39             | 0.29         |  |
| Span # 2                                                  | 2      | 10.000         | -14.93           | 47.79             | 0.31         |  |
| Span # 3                                                  | 3      | 10.000         | -15.52           | 47.79             | 0.32         |  |
| Span # 4                                                  | 4      | 7.500          | -7.67            | 47.79             | 0.16         |  |
| Span # 5                                                  | 5      | 7.500          | -7.59            | 47.79             | 0.16         |  |
|                                                           |        |                |                  |                   |              |  |



### Lic. # : KW-06005835

| Load Combination                                          |        | Location (ft)    | Bending S        | tress Results (k | -ft )        |  |
|-----------------------------------------------------------|--------|------------------|------------------|------------------|--------------|--|
| Segment                                                   | Span # | along Beam       | Mu : Max         | Phi*Mnx          | Stress Ratio |  |
| +1.20D+1.60L+0.50S+1.60H, LL Comb Run (*L**L)             |        |                  |                  |                  |              |  |
| Span # 1                                                  | 1      | 10.000           | -13.26           | 46.39            | 0.29         |  |
| Span # 2                                                  | 2      | 10.000           | -14.88           | 47.79            | 0.31         |  |
| Span # 3                                                  | 3      | 10.000           | -15.68           | 47.79            | 0.33         |  |
| Span # 4                                                  | 4      | 7.500            | -9.22            | 47.79            | 0.19         |  |
| Span # 5                                                  | 5      | 7.500            | 9.69             | 42.91            | 0.23         |  |
| +1.20D+1.60L+0.50S+1.60H, LL Comb Run (*L*L*)<br>Span # 1 | 1      | 10.000           | -13.43           | 46.39            | 0.29         |  |
| Span # 2                                                  | 2      | 10.000           | -15.06           | 47.79            | 0.32         |  |
| Span # 3                                                  | 3      | 10.000           | -15.04           | 47.79            | 0.31         |  |
| Span # 4                                                  | 4      | 7.500            | -9.45            | 47.79            | 0.20         |  |
| Span # 5                                                  | 5      | 7.500            | -9.54            | 47.79            | 0.20         |  |
| +1.20D+1.60L+0.50S+1.60H, LL Comb Run (*L*LL)             |        |                  |                  |                  |              |  |
| Span # 1                                                  | 1      | 10.000           | -13.39           | 46.39            | 0.29         |  |
| Span # 2                                                  | 2      | 10.000           | -15.02           | 47.79            | 0.31         |  |
| Span # 3                                                  | 3      | 10.000           | -15.20           | 47.79            | 0.32         |  |
| Span # 4<br>Span # 5                                      | 4<br>5 | 7.500<br>7.500   | -10.75<br>-12.09 | 47.79<br>47.79   | 0.22<br>0.25 |  |
| +1.20D+1.60L+0.50S+1.60H, LL Comb Run (*LL**)             | 5      | 7.300            | -12.09           | 47.79            | 0.25         |  |
| Span # 1                                                  | 1      | 10.000           | -12.34           | 46.39            | 0.27         |  |
| Span # 2                                                  | 2      | 10.000           | -16.63           | 47.79            | 0.35         |  |
| Span # 3                                                  | 3      | 10.000           | -19.01           | 47.79            | 0.40         |  |
| Span # 4                                                  | 4      | 7.500            | -11.77           | 47.79            | 0.25         |  |
| Span # 5                                                  | 5      | 7.500            | 6.51             | 42.91            | 0.15         |  |
| +1.20D+1.60L+0.50S+1.60H, LL Comb Run (*LL*L)             |        |                  |                  |                  |              |  |
| Span # 1                                                  | 1      | 10.000           | -12.29           | 46.39            | 0.27         |  |
| Span # 2                                                  | 2      | 10.000           | -16.79           | 47.79            | 0.35         |  |
| Span # 3                                                  | 3      | 10.000           | -19.17           | 47.79            | 0.40         |  |
| Span # 4                                                  | 4      | 7.500            | -11.18           | 47.79            | 0.23         |  |
| Span # 5                                                  | 5      | 7.500            | 10.11            | 42.91            | 0.24         |  |
| +1.20D+1.60L+0.50S+1.60H, LL Comb Run (*LLL*)<br>Span # 1 | 1      | 10.000           | -12.47           | 46.39            | 0.27         |  |
| Span # 2                                                  | 2      | 10.000           | -16.17           | 40.37            | 0.34         |  |
| Span # 3                                                  | 3      | 10.000           | -18.53           | 47.79            | 0.39         |  |
| Span # 4                                                  | 4      | 7.500            | -13.54           | 47.79            | 0.28         |  |
| Span # 5                                                  | 5      | 7.500            | -8.52            | 47.79            | 0.18         |  |
| +1.20D+1.60L+0.50S+1.60H, LL Comb Run (*LLLL)             |        |                  |                  |                  |              |  |
| Span # 1                                                  | 1      | 10.000           | -12.43           | 46.39            | 0.27         |  |
| Span # 2                                                  | 2      | 10.000           | -16.32           | 47.79            | 0.34         |  |
| Span # 3                                                  | 3      | 10.000           | -18.69           | 47.79            | 0.39         |  |
| Span # 4                                                  | 4      | 7.500            | -12.95           | 47.79            | 0.27         |  |
| Span # 5                                                  | 5      | 7.500            | -11.07           | 47.79            | 0.23         |  |
| +1.20D+1.60L+0.50S+1.60H, LL Comb Run (L****)             | 1      | 10.000           | -18.58           | 46.39            | 0.40         |  |
| Span # 1<br>Span # 2                                      | 2      | 10.000           | -13.71           | 40.39            | 0.40         |  |
| Span # 2<br>Span # 3                                      | 2      | 10.000           | -11.23           | 47.79            | 0.23         |  |
| Span # 4                                                  | 4      | 7.500            | -8.96            | 47.79            | 0.19         |  |
| Span # 5                                                  | 5      | 7.500            | -7.26            | 47.79            | 0.15         |  |
| +1.20D+1.60L+0.50S+1.60H, LL Comb Run (L***L)             |        |                  |                  |                  |              |  |
| Span # 1                                                  | 1      | 10.000           | -18.60           | 46.39            | 0.40         |  |
| Span # 2                                                  | 2      | 10.000           | -13.67           | 47.79            | 0.29         |  |
| Span # 3                                                  | 3      | 10.000           | -11.39           | 47.79            | 0.24         |  |
| Span # 4                                                  | 4      | 7.500            | -8.94            | 47.79            | 0.19         |  |
| Span # 5                                                  | 5      | 7.500            | 9.82             | 42.91            | 0.23         |  |
| +1.20D+1.60L+0.50S+1.60H, LL Comb Run (L**L*)             | 1      | 10.000           | 10 F1            | 44.20            | 0.40         |  |
| Span # 1<br>Span # 2                                      | 1<br>2 | 10.000<br>10.000 | -18.51<br>-13.85 | 46.39<br>47.79   | 0.40<br>0.29 |  |
| Span # 2<br>Span # 3                                      | 2      | 10.000           | -10.75           | 47.79            | 0.29         |  |
| Span # 4                                                  | 4      | 7.500            | -10.73           | 47.79            | 0.22         |  |
| Span # 5                                                  | 5      | 7.500            | -9.22            | 47.79            | 0.19         |  |
| +1.20D+1.60L+0.50S+1.60H, LL Comb Run (L**LL)             | 5      |                  |                  |                  |              |  |
| Span # 1                                                  | 1      | 10.000           | -18.53           | 46.39            | 0.40         |  |
| Span # 2                                                  | 2      | 10.000           | -13.81           | 47.79            | 0.29         |  |
| Span # 3                                                  | 3      | 10.000           | -10.91           | 47.79            | 0.23         |  |
| Span # 4                                                  | 4      | 7.500            | -10.46           | 47.79            | 0.22         |  |
| Span # 5                                                  | 5      | 7.500            | -11.77           | 47.79            | 0.25         |  |
| +1.20D+1.60L+0.50S+1.60H, LL Comb Run (L*L**)             |        | 40.000           | 40.00            |                  | o ::         |  |
| Span # 1                                                  | 1      | 10.000           | -19.08           | 46.39            | 0.41         |  |
| Span # 2                                                  | 2      | 10.000           | -13.17           | 47.79            | 0.28         |  |
|                                                           |        |                  |                  |                  |              |  |



# **Concrete Beam** Lic. # : KW-06005835

| ad Combination                                                                 |        | Location (ft)    | Bending          | Stress Results (k |              |  |
|--------------------------------------------------------------------------------|--------|------------------|------------------|-------------------|--------------|--|
| Segment                                                                        | Span # | along Beam       | Mu : Max         | Phi*Mnx           | Stress Ratio |  |
| Span # 3                                                                       | 3      | 10.000           | -14.72           | 47.79             | 0.31         |  |
| Span # 4                                                                       | 4      | 7.500            | -13.06           | 47.79             | 0.27         |  |
| Span # 5                                                                       | 5      | 7.500            | 6.64             | 42.91             | 0.15         |  |
| 20D+1.60L+0.50S+1.60H, LL Comb Run (L*L*L)                                     |        | 40.000           | 10.10            |                   |              |  |
| Span # 1                                                                       | 1      | 10.000           | -19.10           | 46.39             | 0.41         |  |
| Span # 2                                                                       | 2      | 10.000           | -13.33           | 47.79             | 0.28         |  |
| Span # 3<br>Span # 4                                                           | 3<br>4 | 10.000<br>7.500  | -14.88<br>-12.47 | 47.79<br>47.79    | 0.31<br>0.26 |  |
| Span # 4<br>Span # 5                                                           | 4<br>5 | 7.500            | -12.47<br>10.25  | 47.79             | 0.24         |  |
| 20D+1.60L+0.50S+1.60H, LL Comb Run (L*LL*)                                     | 5      | 7.500            | 10.25            | 42.71             | 0.24         |  |
| Span # 1                                                                       | 1      | 10.000           | -19.01           | 46.39             | 0.41         |  |
| Span # 2                                                                       | 2      | 10.000           | -12.85           | 47.79             | 0.27         |  |
| Span # 3                                                                       | 3      | 10.000           | -14.24           | 47.79             | 0.30         |  |
| Span # 4                                                                       | 4      | 7.500            | -14.84           | 47.79             | 0.31         |  |
| Span # 5                                                                       | 5      | 7.500            | -8.20            | 47.79             | 0.17         |  |
| 20D+1.60L+0.50S+1.60H, LL Comb Run (L*LLL)                                     |        |                  |                  |                   |              |  |
| Span # 1                                                                       | 1      | 10.000           | -19.03           | 46.39             | 0.41         |  |
| Span # 2                                                                       | 2      | 10.000           | -12.86           | 47.79             | 0.27         |  |
| Span # 3                                                                       | 3      | 10.000           | -14.40           | 47.79             | 0.30         |  |
| Span # 4                                                                       | 4      | 7.500            | -14.25           | 47.79             | 0.30         |  |
| Span # 5                                                                       | 5      | 7.500            | -10.74           | 47.79             | 0.22         |  |
| 20D+1.60L+0.50S+1.60H, LL Comb Run (LL***)                                     |        | 10.000           | A. / / F         | 44.00             | 0.07         |  |
| Span # 1                                                                       | 1      | 10.000           | -16.65           | 46.39             | 0.36         |  |
| Span # 2                                                                       | 2      | 10.000           | -17.57           | 47.79             | 0.37         |  |
| Span # 3<br>Span # 4                                                           | 3<br>4 | 10.000<br>7.500  | -14.80<br>-7.89  | 47.79<br>47.79    | 0.31<br>0.17 |  |
| Span # 4<br>Span # 5                                                           | 4<br>5 | 7.500            | -7.53            | 47.79             | 0.16         |  |
| 20D+1.60L+0.50S+1.60H, LL Comb Run (LL**L)                                     | 5      | 7.500            | -7.05            | 47.79             | 0.10         |  |
| Span # 1                                                                       | 1      | 10.000           | -16.67           | 46.39             | 0.36         |  |
| Span # 2                                                                       | 2      | 10.000           | -17.53           | 47.79             | 0.30         |  |
| Span # 3                                                                       | 3      | 10.000           | -14.96           | 47.79             | 0.31         |  |
| Span # 4                                                                       | 4      | 7.500            | -9.17            | 47.79             | 0.19         |  |
| Span # 5                                                                       | 5      | 7.500            | 9.71             | 42.91             | 0.23         |  |
| 20D+1.60L+0.50S+1.60H, LL Comb Run (LL*L*)                                     | -      |                  |                  |                   |              |  |
| Span # 1                                                                       | 1      | 10.000           | -16.58           | 46.39             | 0.36         |  |
| Span # 2                                                                       | 2      | 10.000           | -17.71           | 47.79             | 0.37         |  |
| Span # 3                                                                       | 3      | 10.000           | -14.32           | 47.79             | 0.30         |  |
| Span # 4                                                                       | 4      | 7.500            | -9.66            | 47.79             | 0.20         |  |
| Span # 5                                                                       | 5      | 7.500            | -9.49            | 47.79             | 0.20         |  |
| 20D+1.60L+0.50S+1.60H, LL Comb Run (LL*LL)                                     |        |                  |                  |                   |              |  |
| Span # 1                                                                       | 1      | 10.000           | -16.60           | 46.39             | 0.36         |  |
| Span # 2                                                                       | 2      | 10.000           | -17.66           | 47.79             | 0.37         |  |
| Span # 3                                                                       | 3      | 10.000           | -14.48           | 47.79             | 0.30         |  |
| Span # 4                                                                       | 4      | 7.500            | -10.70           | 47.79             | 0.22         |  |
| Span # 5                                                                       | 5      | 7.500            | -12.04           | 47.79             | 0.25         |  |
| 20D+1.60L+0.50S+1.60H, LL Comb Run (LLL**)                                     | 1      | 10.000           | 17 15            | 11 20             | C 77         |  |
| Span # 1<br>Span # 2                                                           | 1<br>2 | 10.000<br>10.000 | -17.15<br>-16.57 | 46.39<br>47.79    | 0.37<br>0.35 |  |
| Span # 2<br>Span # 3                                                           | 2 3    | 10.000           | -18.29           | 47.79             | 0.38         |  |
| Span # 4                                                                       | 4      | 7.500            | -10.29           | 47.79             | 0.38         |  |
| Span # 5                                                                       | 5      | 7.500            | 6.53             | 42.91             | 0.25         |  |
| 20D+1.60L+0.50S+1.60H, LL Comb Run (LLL*L)                                     | 5      | ,                | 0.00             | 74.71             | 0.10         |  |
| Span # 1                                                                       | 1      | 10.000           | -17.17           | 46.39             | 0.37         |  |
| Span # 2                                                                       | 2      | 10.000           | -16.53           | 47.79             | 0.35         |  |
| Span # 3                                                                       | 3      | 10.000           | -18.45           | 47.79             | 0.39         |  |
| Span # 4                                                                       | 4      | 7.500            | -11.39           | 47.79             | 0.24         |  |
| Span # 5                                                                       | 5      | 7.500            | 10.13            | 42.91             | 0.24         |  |
| 20D+1.60L+0.50S+1.60H, LL Comb Run (LLLL*)                                     |        |                  |                  |                   |              |  |
| Span # 1                                                                       | 1      | 10.000           | -17.08           | 46.39             | 0.37         |  |
| Span # 2                                                                       | 2      | 10.000           | -16.71           | 47.79             | 0.35         |  |
| Span # 3                                                                       | 3      | 10.000           | -17.82           | 47.79             | 0.37         |  |
| Span # 4                                                                       | 4      | 7.500            | -13.76           | 47.79             | 0.29         |  |
| -                                                                              | 5      | 7.500            | -8.47            | 47.79             | 0.18         |  |
| Span # 5                                                                       |        |                  |                  |                   |              |  |
| 20D+1.60L+0.50S+1.60H, LL Comb Run (LLLLL)                                     |        | 40.000           |                  |                   | A A 7        |  |
| 20D+1.60L+0.50S+1.60H, LL Comb Run (LLLLL)<br>Span # 1                         | 1      | 10.000           | -17.10           | 46.39             | 0.37         |  |
| 20D+1.60L+0.50S+1.60H, LL Comb Run (LLLLL)<br>Span # 1<br>Span # 2             | 2      | 10.000           | -16.66           | 47.79             | 0.35         |  |
| 20D+1.60L+0.50S+1.60H, LL Comb Run (LLLLL)<br>Span # 1<br>Span # 2<br>Span # 3 | 2<br>3 | 10.000<br>10.000 | -16.66<br>-17.98 | 47.79<br>47.79    | 0.35<br>0.38 |  |
| 20D+1.60L+0.50S+1.60H, LL Comb Run (LLLLL)<br>Span # 1<br>Span # 2             | 2      | 10.000           | -16.66           | 47.79             | 0.35         |  |



# **Concrete Beam** Lic. # : KW-06005835

| Load Combination                                                 |        | Location (ft) | Bending S | Stress Results (k |              |  |
|------------------------------------------------------------------|--------|---------------|-----------|-------------------|--------------|--|
| Segment                                                          | Span # | along Beam    | Mu : Max  | Phi*Mnx           | Stress Ratio |  |
| 1.20D+L+1.60S+1.60H, LL Comb Run (****L)                         |        |               |           |                   |              |  |
| Span # 1                                                         | 1      | 10.000        | -11.38    | 46.39             | 0.25         |  |
| Span # 2                                                         | 2      | 10.000        | -11.04    | 47.79             | 0.23         |  |
| Span # 3                                                         | 3      | 10.000        | -12.04    | 47.79             | 0.25         |  |
| Span # 4                                                         | 4      | 7.500         | -8.38     | 47.79             | 0.18         |  |
| Span # 5                                                         | 5      | 7.500         | 8.45      | 42.91             | 0.20         |  |
| 1.20D+L+1.60S+1.60H, LL Comb Run (***L*)                         | 1      | 10.000        | -11.32    | 46.39             | 0.24         |  |
| Span # 1<br>Span # 2                                             | 1<br>2 | 10.000        | -11.32    | 40.39             | 0.24         |  |
| Span # 3                                                         | 23     | 10.000        | -11.64    | 47.79             | 0.23         |  |
| Span # 4                                                         | 4      | 7.500         | -9.86     | 47.79             | 0.24         |  |
| Span # 5                                                         | 5      | 7.500         | -8.54     | 47.79             | 0.18         |  |
| 1.20D+L+1.60S+1.60H, LL Comb Run (***LL)                         | 5      | 7.500         | 0.54      | 11.17             | 0.10         |  |
| Span # 1                                                         | 1      | 10.000        | -11.33    | 46.39             | 0.24         |  |
| Span # 2                                                         | 2      | 10.000        | -11.13    | 47.79             | 0.23         |  |
| Span # 3                                                         | 3      | 10.000        | -11.74    | 47.79             | 0.25         |  |
| Span # 4                                                         | 4      | 7.500         | -9.49     | 47.79             | 0.20         |  |
| Span # 5                                                         | 5      | 7.500         | -10.13    | 47.79             | 0.21         |  |
| 1.20D+L+1.60S+1.60H, LL Comb Run (**L**)                         |        |               |           |                   |              |  |
| Span # 1                                                         | 1      | 10.000        | -11.67    | 46.39             | 0.25         |  |
| Span # 2                                                         | 2      | 10.000        | -12.54    | 47.79             | 0.26         |  |
| Span # 3                                                         | 3      | 10.000        | -14.13    | 47.79             | 0.30         |  |
| Span # 4                                                         | 4      | 7.500         | -11.31    | 47.79             | 0.24         |  |
| Span # 5                                                         | 5      | 7.500         | 6.46      | 42.91             | 0.15         |  |
| 1.20D+L+1.60S+1.60H, LL Comb Run (**L*L)                         |        |               |           |                   |              |  |
| Span # 1                                                         | 1      | 10.000        | -11.69    | 46.39             | 0.25         |  |
| Span # 2                                                         | 2      | 10.000        | -12.64    | 47.79             | 0.26         |  |
| Span # 3                                                         | 3      | 10.000        | -14.22    | 47.79             | 0.30         |  |
| Span # 4                                                         | 4      | 7.500         | -10.94    | 47.79             | 0.23         |  |
| Span # 5                                                         | 5      | 7.500         | 8.71      | 42.91             | 0.20         |  |
| I.20D+L+1.60S+1.60H, LL Comb Run (**LL*)                         | 1      | 10.000        | 11 / 0    | 1/ 20             | 0.05         |  |
| Span # 1                                                         | 1      | 10.000        | -11.63    | 46.39             | 0.25         |  |
| Span # 2                                                         | 2      | 10.000        | -12.25    | 47.79             | 0.26         |  |
| Span # 3                                                         | 3      | 10.000        | -13.83    | 47.79             | 0.29         |  |
| Span # 4                                                         | 4<br>5 | 7.500         | -12.42    | 47.79             | 0.26         |  |
| Span # 5                                                         | C      | 7.500         | -7.90     | 47.79             | 0.17         |  |
| 1.20D+L+1.60S+1.60H, LL Comb Run (**LLL)<br>Span # 1             | 1      | 10.000        | -11.65    | 46.39             | 0.25         |  |
| Span # 2                                                         | 2      | 10.000        | -11.05    | 40.39             | 0.25         |  |
| Span # 3                                                         | 3      | 10.000        | -12.35    | 47.79             | 0.20         |  |
| Span # 4                                                         | 4      | 7.500         | -12.05    | 47.79             | 0.25         |  |
| Span # 5                                                         | 5      | 7.500         | -9.49     | 47.79             | 0.20         |  |
| 1.20D+L+1.60S+1.60H, LL Comb Run (*L***)                         | 5      | 7.500         | -7.47     | 77.77             | 0.20         |  |
| Span # 1                                                         | 1      | 10.000        | -11.91    | 46.39             | 0.26         |  |
| Span # 2                                                         | 2      | 10.000        | -13.48    | 47.79             | 0.28         |  |
| Span # 3                                                         | 3      | 10.000        | -14.18    | 47.79             | 0.30         |  |
| Span # 4                                                         | 4      | 7.500         | -8.07     | 47.79             | 0.17         |  |
| Span # 5                                                         | 5      | 7.500         | -7.49     | 47.79             | 0.16         |  |
| I.20D+L+1.60S+1.60H, LL Comb Run (*L**L)                         |        |               |           |                   |              |  |
| Span # 1                                                         | 1      | 10.000        | -11.88    | 46.39             | 0.26         |  |
| Span # 2                                                         | 2      | 10.000        | -13.45    | 47.79             | 0.28         |  |
| Span # 3                                                         | 3      | 10.000        | -14.28    | 47.79             | 0.30         |  |
| Span # 4                                                         | 4      | 7.500         | -8.20     | 47.79             | 0.17         |  |
| Span # 5                                                         | 5      | 7.500         | 8.38      | 42.91             | 0.20         |  |
| I.20D+L+1.60S+1.60H, LL Comb Run (*L*L*)                         |        |               |           |                   |              |  |
| Span # 1                                                         | 1      | 10.000        | -11.99    | 46.39             | 0.26         |  |
| Span # 2                                                         | 2      | 10.000        | -13.57    | 47.79             | 0.28         |  |
| Span # 3                                                         | 3      | 10.000        | -13.88    | 47.79             | 0.29         |  |
| Span # 4                                                         | 4      | 7.500         | -9.18     | 47.79             | 0.19         |  |
| Span # 5                                                         | 5      | 7.500         | -8.71     | 47.79             | 0.18         |  |
| I.20D+L+1.60S+1.60H, LL Comb Run (*L*LL)                         |        |               |           |                   |              |  |
| Span # 1                                                         | 1      | 10.000        | -11.96    | 46.39             | 0.26         |  |
| Span # 2                                                         | 2      | 10.000        | -13.54    | 47.79             | 0.28         |  |
|                                                                  | 3      | 10.000        | -13.98    | 47.79             | 0.29         |  |
| Span # 3                                                         |        | 7.500         | -9.16     | 47.79             | 0.19         |  |
| Span # 4                                                         | 4      |               |           |                   |              |  |
| Span # 4<br>Span # 5                                             | 4<br>5 | 7.500         | -10.30    | 47.79             | 0.22         |  |
| Span # 4<br>Span # 5<br>1.20D+L+1.60S+1.60H, LL Comb Run (*LL**) | 5      | 7.500         | -10.30    | 47.79             | 0.22         |  |
| Span # 4<br>Span # 5                                             |        |               |           |                   |              |  |



# **Concrete Beam** Lic. # : KW-06005835

| ad Combination                              |        | Location (ft)    | Bending S        | Stress Results (k | -            |  |
|---------------------------------------------|--------|------------------|------------------|-------------------|--------------|--|
| Segment                                     | Span # | along Beam       | Mu : Max         | Phi*Mnx           | Stress Ratio |  |
| Span # 3                                    | 3      | 10.000           | -16.36           | 47.79             | 0.34         |  |
| Span # 4                                    | 4      | 7.500            | -10.64           | 47.79             | 0.22         |  |
| Span # 5                                    | 5      | 7.500            | 6.39             | 42.91             | 0.15         |  |
| 20D+L+1.60S+1.60H, LL Comb Run (*LL*L)      |        |                  |                  |                   |              |  |
| Span # 1                                    | 1      | 10.000           | -11.28           | 46.39             | 0.24         |  |
| Span # 2                                    | 2      | 10.000           | -14.40           | 47.79             | 0.30         |  |
| Span # 3                                    | 3      | 10.000           | -16.46           | 47.79             | 0.34         |  |
| Span # 4                                    | 4      | 7.500            | -10.27           | 47.79             | 0.21         |  |
| Span # 5                                    | 5      | 7.500            | 8.64             | 42.91             | 0.20         |  |
| 20D+L+1.60S+1.60H, LL Comb Run (*LLL*)      |        |                  |                  |                   |              |  |
| Span # 1                                    | 1      | 10.000           | -11.39           | 46.39             | 0.25         |  |
| Span # 2                                    | 2      | 10.000           | -14.01           | 47.79             | 0.29         |  |
| Span # 3                                    | 3      | 10.000           | -16.06           | 47.79             | 0.34         |  |
| Span # 4                                    | 4      | 7.500            | -11.75           | 47.79             | 0.25         |  |
| Span # 5                                    | 5      | 7.500            | -8.07            | 47.79             | 0.17         |  |
| 20D+L+1.60S+1.60H, LL Comb Run (*LLLL)      |        |                  |                  |                   |              |  |
| Span # 1                                    | 1      | 10.000           | -11.36           | 46.39             | 0.24         |  |
| Span # 2                                    | 2      | 10.000           | -14.11           | 47.79             | 0.30         |  |
| pan # 3                                     | 3      | 10.000           | -16.16           | 47.79             | 0.34         |  |
| pan # 4                                     | 4      | 7.500            | -11.38           | 47.79             | 0.24         |  |
| pan # 5                                     | 5      | 7.500            | -9.66            | 47.79             | 0.20         |  |
| 20D+L+1.60S+1.60H, LL Comb Run (L****)      |        |                  |                  |                   |              |  |
| Span # 1                                    | 1      | 10.000           | -15.87           | 46.39             | 0.34         |  |
| 5pan # 2                                    | 2      | 10.000           | -12.72           | 47.79             | 0.27         |  |
| Span # 3                                    | 3      | 10.000           | -11.50           | 47.79             | 0.24         |  |
| Span # 4                                    | 4      | 7.500            | -8.88            | 47.79             | 0.19         |  |
| Span # 5                                    | 5      | 7.500            | -7.28            | 47.79             | 0.15         |  |
| 20D+L+1.60S+1.60H, LL Comb Run (L***L)      |        |                  |                  |                   |              |  |
| Span # 1                                    | 1      | 10.000           | -15.88           | 46.39             | 0.34         |  |
| Span # 2                                    | 2      | 10.000           | -12.69           | 47.79             | 0.27         |  |
| Span # 3                                    | 3      | 10.000           | -11.60           | 47.79             | 0.24         |  |
| Span # 4                                    | 4      | 7.500            | -8.51            | 47.79             | 0.18         |  |
| Span # 5                                    | 5      | 7.500            | 8.46             | 42.91             | 0.20         |  |
| 20D+L+1.60S+1.60H, LL Comb Run (L**L*)      | 5      | 1.000            | 0.40             | 72.71             | 0.20         |  |
| Span # 1                                    | 1      | 10.000           | -15.83           | 46.39             | 0.34         |  |
| Span # 2                                    | 2      | 10.000           | -12.81           | 47.79             | 0.27         |  |
| Span # 3                                    | 3      | 10.000           | -11.20           | 47.79             | 0.23         |  |
| Span # 4                                    | 4      | 7.500            | -11.20<br>-9.99  | 47.79             | 0.23         |  |
| Span # 5                                    | 4<br>5 | 7.500            | -8.51            | 47.79             |              |  |
| 20D+L+1.60S+1.60H, LL Comb Run (L**LL)      | 5      | 7.500            | -0.01            | 47.79             | 0.18         |  |
|                                             | 1      | 10.000           | 15.07            | 44.20             | 0.24         |  |
| Span # 1                                    | 1<br>2 | 10.000<br>10.000 | -15.84<br>-12.78 | 46.39<br>47.79    | 0.34<br>0.27 |  |
| Span # 2                                    |        |                  |                  |                   |              |  |
| Span # 3                                    | 3      | 10.000           | -11.30           | 47.79             | 0.24         |  |
| Span # 4                                    | 4      | 7.500            | -9.62            | 47.79             | 0.20         |  |
| Span # 5                                    | 5      | 7.500            | -10.10           | 47.79             | 0.21         |  |
| 20D+L+1.60S+1.60H, LL Comb Run (L*L**)      |        | 10.000           | 4/ 40            |                   | 0.05         |  |
| Span # 1                                    | 1      | 10.000           | -16.18           | 46.39             | 0.35         |  |
| Span # 2                                    | 2      | 10.000           | -12.14           | 47.79             | 0.25         |  |
| Span # 3                                    | 3      | 10.000           | -13.68           | 47.79             | 0.29         |  |
| Span # 4                                    | 4      | 7.500            | -11.45           | 47.79             | 0.24         |  |
| Span # 5                                    | 5      | 7.500            | 6.47             | 42.91             | 0.15         |  |
| 20D+L+1.60S+1.60H, LL Comb Run (L*L*L)      |        | 40.000           |                  |                   | c            |  |
| Span # 1                                    | 1      | 10.000           | -16.20           | 46.39             | 0.35         |  |
| Span # 2                                    | 2      | 10.000           | -12.24           | 47.79             | 0.26         |  |
| Span # 3                                    | 3      | 10.000           | -13.78           | 47.79             | 0.29         |  |
| Span # 4                                    | 4      | 7.500            | -11.08           | 47.79             | 0.23         |  |
| Span # 5                                    | 5      | 7.500            | 8.72             | 42.91             | 0.20         |  |
| 20D+L+1.60S+1.60H, LL Comb Run (L*LL*)      |        |                  |                  |                   |              |  |
| Span # 1                                    | 1      | 10.000           | -16.14           | 46.39             | 0.35         |  |
| Span # 2                                    | 2      | 10.000           | -12.19           | 47.79             | 0.25         |  |
| Span # 3                                    | 3      | 10.000           | -13.38           | 47.79             | 0.28         |  |
| Span # 4                                    | 4      | 7.500            | -12.56           | 47.79             | 0.26         |  |
| Span # 5                                    | 5      | 7.500            | -7.87            | 47.79             | 0.16         |  |
| ,<br>20D+L+1.60S+1.60H, LL Comb Run (L*LLL) |        |                  |                  |                   |              |  |
| Span # 1                                    | 1      | 10.000           | -16.15           | 46.39             | 0.35         |  |
| Span # 2                                    | 2      | 10.000           | -12.16           | 47.79             | 0.25         |  |
| Jματη <i>π</i> Z                            |        |                  |                  |                   |              |  |
|                                             |        | 10.000           | -13.48           | 47.79             | 0.28         |  |
| Span # 2<br>Span # 3<br>Span # 4            | 3<br>4 | 10.000<br>7.500  | -13.48<br>-12.19 | 47.79<br>47.79    | 0.28<br>0.25 |  |

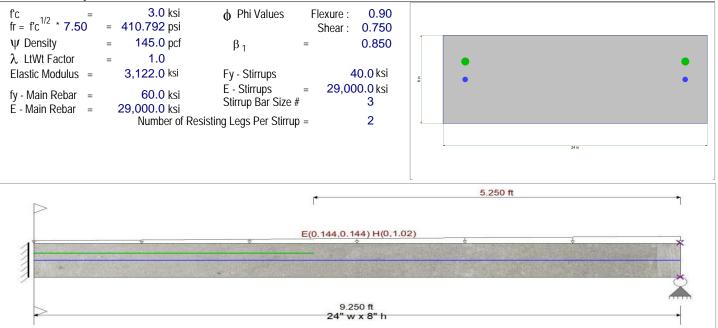


# Lic. # : KW-06005835

| Load Combination                  |            |                    |        | Location (ft)    | Bending Stre             | ss Results (k | -ft )         |                       |
|-----------------------------------|------------|--------------------|--------|------------------|--------------------------|---------------|---------------|-----------------------|
| Segment                           |            | S                  | pan #  | along Beam       | Mu : Max                 | Phi*Mnx       | Stress Rat    | io                    |
| +1.20D+L+1.60S+1.60H, LL Comb Run | (LL***)    |                    |        |                  |                          |               |               |                       |
| Span # 1                          |            |                    | 1      | 10.000           | -14.67                   | 46.39         | 0.32          |                       |
| Span # 2                          |            |                    | 2      | 10.000           | -15.13                   | 47.79         | 0.32          |                       |
| Span # 3                          |            |                    | 3      | 10.000           | -13.73                   | 47.79         | 0.29          |                       |
| Span # 4                          |            |                    | 4      | 7.500            | -8.21                    | 47.79         | 0.17          |                       |
| Span # 5                          |            |                    | 5      | 7.500            | -7.45                    | 47.79         | 0.16          |                       |
| +1.20D+L+1.60S+1.60H, LL Comb Run | (LL**L)    |                    |        |                  |                          |               |               |                       |
| Span # 1                          | . ,        |                    | 1      | 10.000           | -14.68                   | 46.39         | 0.32          |                       |
| Span # 2                          |            |                    | 2      | 10.000           | -15.11                   | 47.79         | 0.32          |                       |
| Span # 3                          |            |                    | 3      | 10.000           | -13.83                   | 47.79         | 0.29          |                       |
| Span # 4                          |            |                    | 4      | 7.500            | -8.17                    | 47.79         | 0.17          |                       |
| Span # 5                          |            |                    | 5      | 7.500            | 8.39                     | 42.91         | 0.20          |                       |
| +1.20D+L+1.60S+1.60H, LL Comb Run | (    *  *) |                    |        |                  |                          |               |               |                       |
| Span # 1                          | (== = )    |                    | 1      | 10.000           | -14.62                   | 46.39         | 0.32          |                       |
| Span # 2                          |            |                    | 2      | 10.000           | -15.22                   | 47.79         | 0.32          |                       |
| Span # 3                          |            |                    | 3      | 10.000           | -13.43                   | 47.79         | 0.28          |                       |
| Span # 4                          |            |                    | 4      | 7.500            | -9.32                    | 47.79         | 0.19          |                       |
| Span # 5                          |            |                    | 5      | 7.500            | -8.68                    | 47.79         | 0.19          |                       |
| +1.20D+L+1.60S+1.60H, LL Comb Run | (  *  )    |                    | 5      | 7.500            | -0.00                    | 77.77         | 0.10          |                       |
| Span # 1                          | (LL LL)    |                    | 1      | 10.000           | -14.64                   | 46.39         | 0.32          |                       |
|                                   |            |                    |        |                  |                          | 40.39         |               |                       |
| Span # 2                          |            |                    | 2<br>3 | 10.000<br>10.000 | -15.19<br>-13.53         | 47.79         | 0.32<br>0.28  |                       |
| Span # 3                          |            |                    |        |                  |                          |               |               |                       |
| Span # 4                          |            |                    | 4      | 7.500            | -9.13                    | 47.79         | 0.19          |                       |
| Span # 5                          | /1 1 1 **\ |                    | 5      | 7.500            | -10.27                   | 47.79         | 0.21          |                       |
| +1.20D+L+1.60S+1.60H, LL Comb Run | (LLL^^)    |                    | 1      | 10.000           | 14.00                    | 44.00         | 0.00          |                       |
| Span # 1                          |            |                    | 1      | 10.000           | -14.98                   | 46.39         | 0.32          |                       |
| Span # 2                          |            |                    | 2      | 10.000           | -14.51                   | 47.79         | 0.30          |                       |
| Span # 3                          |            |                    | 3      | 10.000           | -15.91                   | 47.79         | 0.33          |                       |
| Span # 4                          |            |                    | 4      | 7.500            | -10.77                   | 47.79         | 0.23          |                       |
| Span # 5                          |            |                    | 5      | 7.500            | 6.40                     | 42.91         | 0.15          |                       |
| +1.20D+L+1.60S+1.60H, LL Comb Run | (LLL*L)    |                    |        |                  |                          |               |               |                       |
| Span # 1                          |            |                    | 1      | 10.000           | -14.99                   | 46.39         | 0.32          |                       |
| Span # 2                          |            |                    | 2      | 10.000           | -14.48                   | 47.79         | 0.30          |                       |
| Span # 3                          |            |                    | 3      | 10.000           | -16.01                   | 47.79         | 0.34          |                       |
| Span # 4                          |            |                    | 4      | 7.500            | -10.40                   | 47.79         | 0.22          |                       |
| Span # 5                          |            |                    | 5      | 7.500            | 8.65                     | 42.91         | 0.20          |                       |
| +1.20D+L+1.60S+1.60H, LL Comb Run | (LLLL*)    |                    |        |                  |                          |               |               |                       |
| Span # 1                          |            |                    | 1      | 10.000           | -14.93                   | 46.39         | 0.32          |                       |
| Span # 2                          |            |                    | 2      | 10.000           | -14.60                   | 47.79         | 0.31          |                       |
| Span # 3                          |            |                    | 3      | 10.000           | -15.61                   | 47.79         | 0.33          |                       |
| Span # 4                          |            |                    | 4      | 7.500            | -11.88                   | 47.79         | 0.25          |                       |
| Span # 5                          |            |                    | 5      | 7.500            | -8.04                    | 47.79         | 0.17          |                       |
| +1.20D+L+1.60S+1.60H, LL Comb Run | (LLLLL)    |                    |        |                  |                          |               |               |                       |
| Span # 1                          | . ,        |                    | 1      | 10.000           | -14.95                   | 46.39         | 0.32          |                       |
| Span # 2                          |            |                    | 2      | 10.000           | -14.57                   | 47.79         | 0.30          |                       |
| Span # 3                          |            |                    | 3      | 10.000           | -15.71                   | 47.79         | 0.33          |                       |
| Span # 4                          |            |                    | 4      | 7.500            | -11.51                   | 47.79         | 0.24          |                       |
| Span # 5                          |            |                    | 5      | 7.500            | -9.63                    | 47.79         | 0.20          |                       |
| <b>Overall Maximum Defle</b>      | ctions     |                    |        |                  |                          |               |               |                       |
| Load Combination                  | Span       | Max. "-" Defl (in) | Locat  | ion in Span (ft) | Load Combination         | Max           | "⊥" Defl (in) | Location in Span (ft) |
|                                   |            |                    | Local  |                  |                          | IVIAA         | • • •         |                       |
| +D+L+H, LL Comb Run (L*L*L)       | 1          | 0.0031             |        | 5.000<br>5.000   |                          |               | 0.0000        | 0.000                 |
| +D+L+H, LL Comb Run (*L*L*)       | 2          | 0.0034             |        | 5.000            | Deletiti Demok Demokati  | *1 \          | 0.0000        | 0.000                 |
| +D+L+H, LL Comb Run (L*L*L)       | 3          | 0.0043             |        | 5.000            | +D+L+H, LL Comb Run (L*L |               | -0.0002       | 10.341                |
| +D+L+H, LL Comb Run (L*L*L)       | 4          | 0.0003             |        | 7.841            | +D+L+H, LL Comb Run (L*L | L)            | -0.0008       | 3.068                 |
| +D+L+H, LL Comb Run (L*L*L)       | 5          | 0.0025             |        | 3.750            |                          |               | 0.0000        | 3.068                 |



# 190


Printed: 22 JUL 2022, 9:19AM File: Calcs -Updated.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

DESCRIPTION: Basement Wall Span Vertical

# **CODE REFERENCES**

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16

## **Material Properties**



# **Cross Section & Reinforcing Details**

Rectangular Section, Width = 24.0 in, Height = 8.0 in Span #1 Reinforcing.... 2-#4 at 4.0 in from Bottom, from 0.0 to 9.250 ft in this span

2-#6 at 2.375 in from Top, from 0.0 to 4.0 ft in this span

Load for Span Number 1

Varying Uniform Load : E = 0.0720->0.0720, H= 0.0->0.510 ksf, Extent = 0.0 -->> 9.250 ft, Trib Width = 2.0 ft

| DESIGN SUMMARY<br>Maximum Bending Stress Ra<br>Section used for this span | tio =  |          | cal S  | 0.987:<br>ection   | 1      |                | m Deflec             |                          | Deflection   | 0.003 in             | Desig              | 35984                  | >-36(           |
|---------------------------------------------------------------------------|--------|----------|--------|--------------------|--------|----------------|----------------------|--------------------------|--------------|----------------------|--------------------|------------------------|-----------------|
| Mu : Applied<br>Mn * Phi : Allowab                                        | le     | турі     |        | 6.760 k<br>6.847 k |        | Max U<br>Max D | pward Tra<br>ownward | nsient De<br>Fotal Defle | flection     | 0.000 in<br>0.014 in | Ratio =<br>Ratio = | <mark>0</mark><br>7680 | <360.0<br>>=180 |
| Location of maximum on span                                               |        |          |        | 6.150 f            |        | Max U          | pward Tot            | al Deflect               | ion          | 0.000 in             | Ratio =            | 0                      | <180.           |
| Span # where maximum occurs                                               |        |          | S      | pan # 1            |        |                |                      |                          |              |                      |                    |                        |                 |
| Vertical Reactions                                                        |        |          |        |                    | S      | upport nota    | tion : Far lef       | t is #1                  |              |                      |                    |                        |                 |
| Load Combination                                                          |        | Sup      | port 1 | Support            | 2      |                |                      |                          |              |                      |                    |                        | -               |
| Overall MAXimum                                                           |        |          | 2.706  | 2.94               | 4      |                |                      |                          |              |                      |                    |                        |                 |
| Overall MINimum                                                           |        |          | 0.832  | 0.50               | 0      |                |                      |                          |              |                      |                    |                        |                 |
| H Only                                                                    |        |          | 2.123  | 2.59               | 5      |                |                      |                          |              |                      |                    |                        |                 |
| +0.60H                                                                    |        |          | 1.274  | 1.55               | 7      |                |                      |                          |              |                      |                    |                        |                 |
| +0.70E+0.60H                                                              |        |          | 1.856  | 1.90               | 6      |                |                      |                          |              |                      |                    |                        |                 |
| +0.5250E+H                                                                |        |          | 2.560  | 2.85               | 7      |                |                      |                          |              |                      |                    |                        |                 |
| +0.70E+H                                                                  |        |          | 2.706  | 2.94               | 4      |                |                      |                          |              |                      |                    |                        |                 |
| E Only                                                                    |        |          | 0.832  | 0.50               | 0      |                |                      |                          |              |                      |                    |                        |                 |
| <b>Detailed Shear Informat</b>                                            | ion    |          |        |                    |        |                |                      |                          |              |                      |                    |                        |                 |
|                                                                           | Span   | Distance | 'd'    | Vu                 | (k)    | Mu             | d*Vu/Mu              | Phi*Vc                   | Comment      | Phi*Vs               | Phi*Vn             | Spacing                | (in)            |
| Load Combination I                                                        | Number | (ft)     | (in)   | Actual             | Design | (k-ft)         |                      | (k)                      |              | (k)                  | (k)                | Req'd Su               | Jggest          |
| +E+1.60H                                                                  | 1      | 0.00     | 5.63   | 4.23               | 4.23   | 9.69           | 0.20                 | 11.03                    | Vu < PhiVc/2 | lot Regd 9.6         | . 11.0             | 0.0                    | 0.0             |



Lic. # : KW-06005835

DESCRIPTION: Basement Wall Span Vertical

| oad Combination    | Span<br>Number | Distance<br>(ft) | 'd'<br>(in) | Vu<br>Actual | (k)<br>Design | Mu<br>(k-ft) | d*Vu/Mu | Phi*Vc<br>(k) | Comment      | Phi*Vs<br>(k) | Phi*Vn<br>(k) | Spacing<br>Req'd Su | (in)<br>Jgge |
|--------------------|----------------|------------------|-------------|--------------|---------------|--------------|---------|---------------|--------------|---------------|---------------|---------------------|--------------|
| E+1.60H            | 1              | 0.10             | 5.63        | 4.21         | 4.21          | 9.26         | 0.21    | 11.05         | Vu < PhiVc/2 | lot Reqd 9.6. | 11.0          | 0.0                 | 0            |
| E+1.60H            | 1              | 0.20             | 5.63        | 4.20         | 4.20          | 8.83         | 0.22    | 11.07         | Vu < PhiVc/2 | lot Reqd 9.6. | 11.1          | 0.0                 | 0            |
| E+1.60H            | 1              | 0.30             | 5.63        | 4.18         | 4.18          | 8.41         | 0.23    | 11.10         | Vu < PhiVc/2 | lot Reqd 9.6. | 11.1          | 0.0                 | 0            |
| E+1.60H            | 1              | 0.40             | 5.63        | 4.16         | 4.16          | 7.99         | 0.24    | 11.12         | Vu < PhiVc/2 | lot Reqd 9.6. | 11.1          | 0.0                 | 0            |
| E+1.60H            | 1              | 0.51             | 5.63        | 4.13         | 4.13          | 7.57         | 0.26    | 11.15         | Vu < PhiVc/2 | lot Reqd 9.6. | 11.2          | 0.0                 | 0            |
| E+1.60H            | 1              | 0.61             | 5.63        | 4.11         | 4.11          | 7.15         | 0.27    | 11.18         | Vu < PhiVc/2 | lot Reqd 9.6. | 11.2          | 0.0                 | 0            |
| E+1.60H            | 1              | 0.71             | 5.63        | 4.08         | 4.08          | 6.74         | 0.28    | 11.22         | Vu < PhiVc/2 | lot Reqd 9.6. | 11.2          | 0.0                 | 0            |
| E+1.60H            | 1              | 0.81             | 5.63        | 4.05         | 4.05          | 6.33         | 0.30    | 11.26         | Vu < PhiVc/2 | lot Reqd 9.6. | 11.3          | 0.0                 | C            |
| E+1.60H            | 1              | 0.91             | 5.63        | 4.03         | 4.03          | 5.92         | 0.32    | 11.30         | Vu < PhiVc/2 | lot Reqd 9.6. | 11.3          | 0.0                 | 0            |
| E+1.60H            | 1              | 1.01             | 5.63        | 3.99         | 3.99          | 5.51         | 0.34    | 11.35         | Vu < PhiVc/2 | lot Reqd 9.6. | 11.4          | 0.0                 | 0            |
| E+1.60H            | 1              | 1.11             | 5.63        | 3.96         | 3.96          | 5.11         | 0.36    | 11.41         | Vu < PhiVc/2 | lot Reqd 9.6. | 11.4          | 0.0                 | (            |
| E+1.60H            | 1              | 1.21             | 5.63        | 3.92         | 3.92          | 4.71         | 0.39    | 11.47         | Vu < PhiVc/2 | lot Reqd 9.6. |               | 0.0                 | 0            |
| E+1.60H            | 1              | 1.31             | 5.63        | 3.89         | 3.89          | 4.32         | 0.42    | 11.55         | Vu < PhiVc/2 | lot Reqd 9.6. | 11.5          | 0.0                 | (            |
| E+1.60H            | 1              | 1.42             | 5.63        | 3.85         | 3.85          | 3.93         | 0.46    | 11.64         | Vu < PhiVc/2 | lot Reqd 9.6. |               | 0.0                 | 0            |
| E+1.60H            | 1              | 1.52             | 5.63        | 3.81         | 3.81          | 3.54         | 0.50    | 11.75         | Vu < PhiVc/2 | lot Reqd 9.6. | 11.7          | 0.0                 | 0            |
| E+1.60H            | 1              | 1.62             | 5.63        | 3.77         | 3.77          | 3.16         | 0.56    | 11.88         | Vu < PhiVc/2 | lot Reqd 9.6. | 11.9          | 0.0                 | (            |
| E+1.60H            | 1              | 1.72             | 5.63        | 3.72         | 3.72          | 2.78         | 0.63    | 12.04         | Vu < PhiVc/2 | lot Reqd 9.6. |               | 0.0                 | (            |
| E+1.60H            | 1              | 1.82             | 5.63        | 3.67         | 3.67          | 2.41         | 0.72    | 12.26         | Vu < PhiVc/2 | lot Reqd 9.6. | 12.3          | 0.0                 | (            |
| E+1.60H            | 1              | 1.92             | 5.63        | 3.63         | 3.63          | 2.04         | 0.83    | 12.54         | Vu < PhiVc/2 | lot Reqd 9.6. | 12.5          | 0.0                 | (            |
| E+1.60H            | 1              | 2.02             | 5.63        | 3.58         | 3.58          | 1.67         | 1.00    | 12.94         | Vu < PhiVc/2 | lot Reqd 9.6. |               | 0.0                 | (            |
| E+1.60H            | 1              | 2.12             | 5.63        | 3.53         | 3.53          | 1.31         | 1.00    | 12.94         | Vu < PhiVc/2 | lot Reqd 9.6. |               | 0.0                 | (            |
| E+1.60H            | 1              | 2.22             | 5.63        | 3.47         | 3.47          | 0.96         | 1.00    | 12.94         | Vu < PhiVc/2 | lot Reqd 9.6. | 12.9          | 0.0                 | (            |
| E+1.60H            | 1              | 2.33             | 5.63        | 3.42         | 3.42          | 0.61         | 1.00    | 12.94         | Vu < PhiVc/2 | lot Reqd 9.6. | 12.9          | 0.0                 |              |
| E+1.60H            | 1              | 2.43             | 5.63        | 3.36         | 3.36          | 0.27         | 1.00    | 12.94         | Vu < PhiVc/2 | lot Reqd 9.6. | 12.9          | 0.0                 |              |
| E+1.60H            | 1              | 2.53             | 4.00        | 3.30         | 3.30          | 0.07         | 1.00    | 9.89          | Vu < PhiVc/2 | lot Reqd 9.6. | 9.9           | 0.0                 | (            |
| E+1.60H            | 1              | 2.63             | 4.00        | 3.24         | 3.24          | 0.40         | 1.00    | 9.89          | Vu < PhiVc/2 | lot Reqd 9.6. | 9.9           | 0.0                 | (            |
| E+1.60H            | 1              | 2.73             | 4.00        | 3.18         | 3.18          | 0.72         | 1.00    | 9.89          | Vu < PhiVc/2 | lot Reqd 9.6. | 9.9           | 0.0                 | (            |
| E+1.60H            | 1              | 2.83             | 4.00        | 3.11         | 3.11          | 1.04         | 1.00    | 9.89          | Vu < PhiVc/2 | lot Reqd 9.6. | 9.9           | 0.0                 | (            |
| E+1.60H            | 1              | 2.93             | 4.00        | 3.05         | 3.05          | 1.35         | 0.75    | 9.30          | Vu < PhiVc/2 | lot Reqd 9.6. | 9.3           | 0.0                 | (            |
| E+1.60H            | 1              | 3.03             | 4.00        | 2.98         | 2.98          | 1.66         | 0.60    | 8.93          | Vu < PhiVc/2 | lot Reqd 9.6. | 8.9           | 0.0                 | (            |
| E+1.60H            | 1              | 3.13             | 4.00        | 2.91         | 2.91          | 1.96         | 0.50    | 8.68          | Vu < PhiVc/2 | lot Reqd 9.6. | 8.7           | 0.0                 | (            |
| E+1.60H            | 1              | 3.23             | 4.00        | 2.84         | 2.84          | 2.25         | 0.42    | 8.50          | Vu < PhiVc/2 | lot Reqd 9.6. | 8.5           | 0.0                 | (            |
| E+1.60H            | 1              | 3.34             | 4.00        | 2.77         | 2.77          | 2.53         | 0.36    | 8.37          | Vu < PhiVc/2 | lot Reqd 9.6. | 8.4           | 0.0                 | (            |
| E+1.60H<br>E+1.60H | 1              | 3.44             | 4.00        | 2.69         | 2.69          | 2.81         | 0.32    | 8.26          | Vu < PhiVc/2 | lot Reqd 9.6. | 8.3           | 0.0                 | (            |
|                    | 1              | 3.54             | 4.00        | 2.62         | 2.62          | 3.07         | 0.28    | 8.17          | Vu < PhiVc/2 | lot Reqd 9.6. | 8.2           | 0.0                 | (            |
| E+1.60H<br>E+1.60H | 1              | 3.64             | 4.00        | 2.54         | 2.54          | 3.33         | 0.25    | 8.10          | Vu < PhiVc/2 | lot Reqd 9.6. | 8.1           | 0.0                 | (            |
|                    | 1              | 3.74             | 4.00        | 2.46         | 2.46          | 3.59         | 0.23    | 8.04          | Vu < PhiVc/2 | lot Reqd 9.6. | 8.0           | 0.0                 | (            |
| E+1.60H            | 1              | 3.84             | 4.00        | 2.37         | 2.37          | 3.83         | 0.21    | 7.99          | Vu < PhiVc/2 | lot Reqd 9.6. | 8.0           | 0.0                 | (            |
| E+1.60H            | 1              | 3.94             | 4.00        | 2.29         | 2.29          | 4.07         | 0.19    | 7.94          | Vu < PhiVc/2 | lot Reqd 9.6. |               | 0.0                 | (            |
| E+1.60H            | 1              | 4.04             | 4.00        | 2.20         | 2.20          | 4.29         | 0.17    | 7.90          | Vu < PhiVc/2 | lot Reqd 9.6. |               | 0.0                 |              |
| E+1.60H<br>E+1.60H | 1              | 4.14             | 4.00        | 2.12         | 2.12          | 4.51         | 0.16    | 7.87          | Vu < PhiVc/2 | lot Reqd 9.6. |               | 0.0                 | (            |
| E+1.60H            | 1              | 4.25             | 4.00        | 2.03         | 2.03          | 4.72         | 0.14    | 7.84          | Vu < PhiVc/2 | lot Reqd 9.6. | 7.8           | 0.0                 | (            |
| E+1.60H            | 1              | 4.35             | 4.00        | 1.94         | 1.94          | 4.92         | 0.13    | 7.81          | Vu < PhiVc/2 | lot Reqd 9.6. |               | 0.0                 | (            |
|                    | 1              | 4.45             | 4.00        | 1.84         | 1.84          | 5.11         | 0.12    | 7.78          | Vu < PhiVc/2 | lot Reqd 9.6. |               | 0.0                 | (            |
| E+1.60H<br>E+1.60H | 1              | 4.55             | 4.00        | 1.75         | 1.75          | 5.29         | 0.11    | 7.76          | Vu < PhiVc/2 | lot Reqd 9.6. |               | 0.0                 | (            |
|                    | 1              | 4.65             | 4.00        | 1.65         | 1.65          | 5.47         | 0.10    | 7.73          | Vu < PhiVc/2 | lot Reqd 9.6. |               | 0.0                 | (            |
| E+1.60H            | 1              | 4.75             | 4.00        | 1.55         | 1.55          | 5.63         | 0.09    | 7.71          | Vu < PhiVc/2 | lot Reqd 9.6. |               | 0.0                 | (            |
| E+1.60H            | 1              | 4.85             | 4.00        | 1.45         | 1.45          | 5.78         | 0.08    | 7.69          | Vu < PhiVc/2 | lot Reqd 9.6. |               | 0.0                 | (            |
| E+1.60H            | 1              | 4.95             | 4.00        | 1.35         | 1.35          | 5.92         | 0.08    | 7.68          | Vu < PhiVc/2 | lot Reqd 9.6. |               | 0.0                 |              |
| E+1.60H            | 1              | 5.05             | 4.00        | 1.25         | 1.25          | 6.05         | 0.07    | 7.66          | Vu < PhiVc/2 | lot Reqd 9.6. |               | 0.0                 | (            |
| E+1.60H            | 1              | 5.16             | 4.00        | 1.14         | 1.14          | 6.17         | 0.06    | 7.64          | Vu < PhiVc/2 | lot Reqd 9.6. |               | 0.0                 | (            |
| E+1.60H            | 1              | 5.26             | 4.00        | 1.03         | 1.03          | 6.28         | 0.05    | 7.62          | Vu < PhiVc/2 | lot Reqd 9.6. |               | 0.0                 | (            |
| E+1.60H            | 1              | 5.36             | 4.00        | 0.93         | 0.93          | 6.38         | 0.05    | 7.61          | Vu < PhiVc/2 | lot Reqd 9.6. |               | 0.0                 | (            |
| E+1.60H            | 1              | 5.46             | 4.00        | 0.81         | 0.81          | 6.47         | 0.04    | 7.59          | Vu < PhiVc/2 | lot Reqd 9.6. | 7.6           | 0.0                 | (            |



Printed: 22 JUL 2022, 9:19AM File: Calcs -Updated.ec6

QUANTUM CONSULTING ENGINEERS

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31

Lic. # : KW-06005835

DESCRIPTION: Basement Wall Span Vertical

#### **Detailed Shear Information**

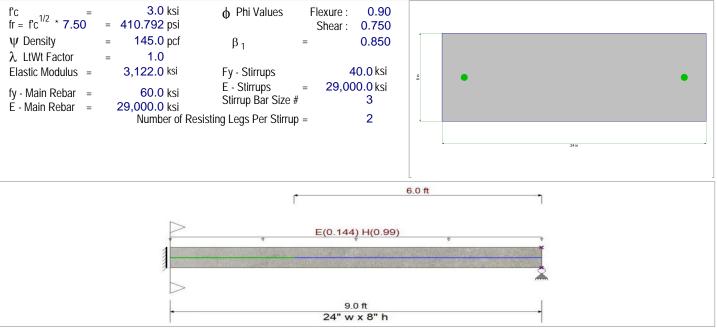
| Load Combination | Span<br>Number | Distance<br>(ft) | 'd'<br>(in) | Vu<br>Actual | (k)<br>Design | Mu<br>(k-ft) | d*Vu/Mu | Phi*Vc<br>(k) | Comment                      | Phi*Vs<br>(k) | Phi*Vn<br>(k) | Spacing (<br>Req'd Su |     |
|------------------|----------------|------------------|-------------|--------------|---------------|--------------|---------|---------------|------------------------------|---------------|---------------|-----------------------|-----|
| +E+1.60H         | 1              | 5.56             | 4.00        | 0.70         | 0.70          | 6.55         | 0.04    | 7.58          | Vu < PhiVc/2                 | lot Regd 9.6. | 7.6           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 5.66             | 4.00        | 0.70         | 0.70          | 6.61         | 0.04    | 7.56          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 5.76             | 4.00        | 0.37         | 0.37          | 6.67         | 0.03    | 7.55          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +1.60H           | 1              | 5.86             | 4.00        | 0.47         | 0.47          | 5.84         | 0.02    | 7.54          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +1.60H           | 1              | 5.96             | 4.00        | 0.30         | 0.30          | 5.87         | 0.02    | 7.53          | Vu < PhiVc/2                 | lot Reqd 9.6. |               | 0.0                   | 0.0 |
| +1.60H           | 1              | 6.07             | 4.00        | 0.20         | 0.20          | 5.89         | 0.01    | 7.51          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +1.60H           | 1              | 6.17             | 4.00        | 0.13         | 0.13          | 5.90         | 0.00    | 7.50          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 6.27             | 4.00        | -0.14        | 0.04          | 6.75         | 0.00    | 7.51          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 6.37             | 4.00        | -0.14        | 0.14          | 6.73         | 0.01    | 7.52          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 6.47             | 4.00        | -0.27        | 0.27          | 6.70         | 0.01    | 7.54          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 6.57             | 4.00        | -0.53        | 0.40          | 6.65         | 0.02    | 7.56          | Vu < PhiVc/2                 | lot Reqd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 6.67             | 4.00        | -0.66        | 0.66          | 6.59         | 0.03    | 7.57          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 6.77             | 4.00        | -0.79        | 0.00          | 6.52         | 0.03    | 7.59          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 6.87             | 4.00        | -0.93        | 0.93          | 6.43         | 0.04    | 7.61          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 6.98             | 4.00        | -0.73        | 1.07          | 6.33         | 0.05    | 7.63          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 7.08             | 4.00        | -1.21        | 1.21          | 6.22         | 0.06    | 7.65          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 7.18             | 4.00        | -1.35        | 1.21          | 6.09         | 0.00    | 7.67          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 7.10             | 4.00        | -1.33        | 1.35          | 5.94         | 0.07    | 7.69          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 7.38             | 4.00        | -1.64        | 1.47          | 5.74         | 0.00    | 7.72          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 7.48             | 4.00        | -1.79        | 1.04          | 5.61         | 0.07    | 7.72          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 7.58             | 4.00        | -1.93        | 1.93          | 5.42         | 0.11    | 7.78          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 7.68             | 4.00        | -2.08        | 2.08          | 5.22         | 0.12    | 7.81          | Vu < PhiVc/2                 | lot Reqd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 7.78             | 4.00        | -2.24        | 2.00          | 5.00         | 0.15    | 7.85          | Vu < PhiVc/2                 | lot Reqd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 7.89             | 4.00        | -2.39        | 2.24          | 4.77         | 0.13    | 7.89          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 7.99             | 4.00        | -2.55        | 2.55          | 4.52         | 0.17    | 7.94          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 8.09             | 4.00        | -2.33        | 2.33          | 4.25         | 0.17    | 8.00          | Vu < PhiVc/2                 | lot Reqd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 8.19             | 4.00        | -2.87        | 2.87          | 3.97         | 0.24    | 8.07          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 8.29             | 4.00        | -3.03        | 3.03          | 3.67         | 0.27    | 8.15          | Vu < PhiVc/2                 | lot Reqd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 8.39             | 4.00        | -3.19        | 3.19          | 3.36         | 0.27    | 8.25          | Vu < PhiVc/2                 | lot Reqd 9.6. | 8.3           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 8.49             | 4.00        | -3.36        | 3.36          | 3.03         | 0.32    | 8.38          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 8.59             | 4.00        | -3.52        | 3.50          | 2.68         | 0.37    | 8.54          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 8.69             | 4.00        | -3.69        | 3.69          | 2.00         | 0.53    | 8.77          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 8.80             | 4.00        | -3.86        | 3.86          | 1.93         | 0.55    | 9.09          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 8.90             | 4.00        | -4.03        | 4.03          | 1.54         | 0.88    | 9.59          | Vu < PhiVc/2                 | lot Reqd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 9.00             | 4.00        | -4.03        | 4.03          | 1.12         | 1.00    | 9.89          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 9.10             | 4.00        | -4.38        | 4.21          | 0.68         | 1.00    | 9.89          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 9.20             | 4.00        | -4.56        | 4.56          | 0.00         | 1.00    | 9.89          | Vu < PhiVc/2                 | lot Reqd 9.6. | 9.9           | 0.0                   | 0.0 |
| Maximum Forces 8 | -              |                  |             |              |               | 0.20         | 1.50    | 7.07          |                              |               | ,.,           | 0.0                   | 0.0 |

#### Load Combination Bending Stress Results (k-ft) Location (ft) Segment Span # Mu : Max Phi\*Mnx Stress Ratio along Beam MAXimum BENDING Envelope Span # 1 1 9.250 6.76 6.85 0.99 +1.60H 9.250 5.91 6.85 0.86 Span # 1 1 +E+1.60H Span # 1 9.250 6.85 0.99 1 6.76 +E+0.90H 9.250 6.85 Span # 1 1 4.18 0.61 **Overall Maximum Deflections** Max. "-" Defl (in) Load Combination Span Location in Span (ft) Load Combination Max. "+" Defl (in) Location in Span (ft) +0.70E+H 0.0145 5.535 0.0000 1

0.000



# 193


Printed: 22 JUL 2022, 9:18AM File: Calcs -Updated.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

DESCRIPTION: Retaining Wall Span Horizonal

# **CODE REFERENCES**

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16

# **Material Properties**



#### **Cross Section & Reinforcing Details**

Rectangular Section, Width = 24.0 in, Height = 8.0 in Span #1 Reinforcing....

2-#5 at 4.0 in from Bottom, from 0.0 to 9.0 ft in this span

2-#5 at 4.0 in from Top, from 0.0 to 3.0 ft in this span

Load for Span Number 1

Uniform Load : E = 0.0720, H = 0.4950 ksf, Tributary Width = 2.0 ft, (Soil Load At Base)

| DESIGN SUMMARY                                                                                       |                                                                         |                                                                                                                                                            |                                                      | Desig              | n OK                                                |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------|-----------------------------------------------------|
| Maximum Bending Stress Ratio =<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable | <b>0.954</b> : 1<br><b>Typical Section</b><br>9.842 k-ft<br>10.312 k-ft | Maximum Deflection<br>Max Downward Transient Deflection<br>Max Upward Transient Deflection<br>Max Downward Total Deflection<br>Max Upward Total Deflection | 0.003 in R<br>0.000 in R<br>0.023 in R<br>0.000 in R | Ratio =<br>Ratio = | 39067 >=360.<br>0 <360.0<br>4789 >=180.<br>0 <180.0 |
| Location of maximum on span<br>Span # where maximum occurs                                           | 5.623 ft<br>Span # 1                                                    |                                                                                                                                                            | 0.000 m                                              |                    |                                                     |
|                                                                                                      |                                                                         |                                                                                                                                                            |                                                      |                    |                                                     |

| Vertical Reactions             |        |          |        |           | S      | upport nota | tion : Far lef | t is #1 |            |        |        |          |        |
|--------------------------------|--------|----------|--------|-----------|--------|-------------|----------------|---------|------------|--------|--------|----------|--------|
| Load Combination               |        | Sup      | oort 1 | Support 2 | 2      |             |                |         |            |        |        |          |        |
| Overall MAXimum                |        |          | 6.063  | 3.754     | 4      |             |                |         |            |        |        |          |        |
| Overall MINimum                |        |          | 0.810  | 0.486     | 6      |             |                |         |            |        |        |          |        |
| H Only                         |        | !        | 5.548  | 3.362     | 2      |             |                |         |            |        |        |          |        |
| +0.60H                         |        |          | 3.341  | 2.00      | 5      |             |                |         |            |        |        |          |        |
| +0.70E+0.60H                   |        |          | 3.908  | 2.34      | 5      |             |                |         |            |        |        |          |        |
| +0.5250E+H                     |        | !        | 5.936  | 3.654     | 4      |             |                |         |            |        |        |          |        |
| +0.70E+H                       |        |          | 6.063  | 3.754     | 4      |             |                |         |            |        |        |          |        |
| E Only                         |        |          | 0.810  | 0.486     | 6      |             |                |         |            |        |        |          |        |
| <b>Detailed Shear Informat</b> | ion    |          |        |           |        |             |                |         |            |        |        |          |        |
|                                | Span   | Distance | 'd'    | Vu        | (k)    | Mu          | d*Vu/Mu        | Phi*Vc  | Comment    | Phi*Vs | Phi*Vn | Spacing  | (in)   |
| Load Combination N             | lumber | (ft)     | (in)   | Actual    | Design | (k-ft)      |                | (k)     |            | (k)    | (k)    | Req'd Su | iggest |
| +E+1.60H                       | 1      | 0.00     | 4.00   | 9.72      | 9.72   | 17.50       | 0.19           | 7.92    | PhiVc < Vu | 1.797  | 21.1   | 2.0      | 2.0    |
| +E+1.60H                       | 1      | 0.10     | 4.00   | 9.55      | 9.55   | 16.55       | 0.19           | 7.94    | PhiVc < Vu | 1.610  | 21.1   | 2.0      | 2.0    |



Lic. # : KW-06005835

DESCRIPTION: Retaining Wall Span Horizonal

| Detailed Shear In    | formation      |                  |              |              |               |              |              |               |                              |                                |               |                       |            |
|----------------------|----------------|------------------|--------------|--------------|---------------|--------------|--------------|---------------|------------------------------|--------------------------------|---------------|-----------------------|------------|
| Load Combination     | Span<br>Number | Distance<br>(ft) | 'd'<br>(in)  | Vu<br>Actual | (k)<br>Design | Mu<br>(k-ft) | d*Vu/Mu      | Phi*Vc<br>(k) | Comment                      | Phi*Vs<br>(k)                  | Phi*Vn<br>(k) | Spacing (<br>Req'd Su |            |
| +E+1.60H             | 1              | 0.20             | 4.00         | 9.38         | 9.38          | 15.62        | 0.20         | 7.96          | PhiVc < Vu                   | 1.422                          | 21.2          | 2.0                   | 2.0        |
| +E+1.60H             | 1              | 0.30             | 4.00         | 9.21         | 9.21          | 14.70        | 0.21         | 7.98          | PhiVc < Vu                   | 1.232                          | 21.2          | 2.0                   | 2.0        |
| +E+1.60H             | 1              | 0.39             | 4.00         | 9.04         | 9.04          | 13.81        | 0.22         | 8.00          | PhiVc < Vu                   | 1.040                          | 21.2          | 2.0                   | 2.0        |
| +E+1.60H             | 1              | 0.49             | 4.00         | 8.87         | 8.87          | 12.92        | 0.23         | 8.02          | PhiVc < Vu                   | 0.8454                         | 21.2          | 2.0                   | 2.0        |
| +E+1.60H             | 1              | 0.59             | 4.00         | 8.70         | 8.70          | 12.06        | 0.24         | 8.05          | PhiVc < Vu                   | 0.6483                         | 21.3          | 2.0                   | 2.0        |
| +E+1.60H             | 1              | 0.69             | 4.00         | 8.53         | 8.53          | 11.21        | 0.25         | 8.08          | PhiVc < Vu                   | 0.4478                         | 21.3          | 2.0                   | 2.0        |
| +E+1.60H             | 1              | 0.79             | 4.00         | 8.36         | 8.36          | 10.38        | 0.27         | 8.12          | PhiVc < Vu                   | 0.2434                         | 21.3          | 2.0                   | 2.0        |
| +E+1.60H             | 1              | 0.89             | 4.00         | 8.19         | 8.19          | 9.57         | 0.29         | 8.16          | PhiVc < Vu                   | 0.03408                        | 21.4          | 2.0                   | 2.0        |
| +E+1.60H             | 1              | 0.98             | 4.00         | 8.02         | 8.02          | 8.77         | 0.30         | 8.20          | PhiVc/2 < Vu <=              |                                | 8.2           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 1.08             | 4.00         | 7.85         | 7.85          | 7.99         | 0.33         | 8.25          | PhiVc/2 < Vu <=              |                                | 8.3           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 1.18             | 4.00         | 7.68         | 7.68          | 7.23         | 0.35         | 8.32          | PhiVc/2 < Vu <=              |                                | 8.3           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 1.28             | 4.00         | 7.51         | 7.51          | 6.48         | 0.39         | 8.39          | PhiVc/2 < Vu <=              |                                | 8.4           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 1.38             | 4.00         | 7.34         | 7.34          | 5.75         | 0.43         | 8.48          | PhiVc/2 < Vu <=              | lt<=10", Not I                 | 8.5           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 1.48             | 4.00         | 7.17         | 7.17          | 5.04         | 0.47         | 8.60          | PhiVc/2 < Vu <=              |                                | 8.6           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 1.57             | 4.00         | 7.00         | 7.00          | 4.34         | 0.54         | 8.74          | PhiVc/2 < Vu <=              |                                | 8.7           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 1.67             | 4.00         | 6.83         | 6.83          | 3.66         | 0.62         | 8.94          | PhiVc/2 < Vu <=              |                                | 8.9           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 1.77             | 4.00         | 6.66         | 6.66          | 3.00         | 0.74         | 9.22          | PhiVc/2 < Vu <=              |                                | 9.2           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 1.87             | 4.00         | 6.49         | 6.49          | 2.35         | 0.92         | 9.63          | PhiVc/2 < Vu <=              |                                | 9.6           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 1.97             | 4.00         | 6.32         | 6.32          | 1.72         | 1.00         | 9.82          | PhiVc/2 < Vu <=              |                                | 9.8           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 2.07             | 4.00         | 6.15         | 6.15          | 1.10         | 1.00         | 9.82          | PhiVc/2 < Vu <=              |                                | 9.8           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 2.16             | 4.00         | 5.98         | 5.98          | 0.51         | 1.00         | 9.82          | PhiVc/2 < Vu <=              |                                | 9.8           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 2.26             | 4.00         | 5.81         | 5.81          | 0.07         | 1.00         | 9.82          | PhiVc/2 < Vu <=              |                                | 9.8           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 2.36             | 4.00         | 5.64         | 5.64          | 0.63         | 1.00         | 9.82          | PhiVc/2 < Vu <=              |                                | 9.8           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 2.46             | 4.00         | 5.47         | 5.47          | 1.18         | 1.00         | 9.82          | PhiVc/2 < Vu <=              |                                | 9.8           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 2.56             | 4.00         | 5.30         |               | 1.71         | 1.00         | 9.82          | PhiVc/2 < Vu <=              |                                |               | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 2.66             | 4.00         | 5.13         |               | 2.22         | 0.77         | 9.28          | PhiVc/2 < Vu <=              |                                | 9.3           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 2.75             | 4.00         | 4.96         | 4.96          | 2.72         | 0.61         | 8.91          | PhiVc/2 < Vu <=              |                                | 8.9           | 0.0                   | 0.0        |
| +E+1.60H<br>+E+1.60H | 1              | 2.85             | 4.00         | 4.79         | 4.79          | 3.20         | 0.50         | 8.65          | PhiVc/2 < Vu <=              |                                | 8.7           | 0.0                   | 0.0        |
|                      | 1              | 2.95             | 4.00         | 4.62         |               | 3.66         | 0.42         | 8.47          | PhiVc/2 < Vu <=              |                                | 8.5           | 0.0                   | 0.0        |
| +E+1.60H<br>+E+1.60H | 1              | 3.05             | 4.00         | 4.45         |               | 4.11         | 0.36         | 8.33          | PhiVc/2 < Vu <=              |                                | 8.3           | 0.0                   | 0.0        |
| +E+1.60H<br>+E+1.60H | 1              | 3.15             | 4.00         | 4.28         | 4.28          | 4.54         | 0.31         | 8.22          | PhiVc/2 < Vu <=              |                                | 8.2           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 3.25             | 4.00         | 4.11         | 4.11          | 4.95         | 0.28         | 8.14          | PhiVc/2 < Vu <=              |                                | 8.1           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 3.34             | 4.00         | 3.94         | 3.94          | 5.35         | 0.25         | 8.06          | Vu < PhiVc/2                 | lot Reqd 9.6.                  | 8.1           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 3.44             | 4.00         | 3.77         | 3.77          | 5.73         | 0.22         | 8.00          | Vu < PhiVc/2                 | lot Reqd 9.6.                  | 8.0           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 3.54             | 4.00         | 3.60         | 3.60          | 6.09         | 0.20         | 7.95          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6.                  | 8.0           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 3.64             | 4.00         | 3.43         | 3.43          | 6.43         | 0.18         | 7.91          |                              | lot Reqd 9.6.                  | 7.9           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 3.74             | 4.00         | 3.26         |               | 6.76         |              | 7.87          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6.                  | 7.9           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 3.84             | 4.00         | 3.09         | 3.09          | 7.08         | 0.15         | 7.83          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6.                  | 7.8           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 3.93<br>4.03     | 4.00         | 2.92         |               | 7.37         | 0.13<br>0.12 | 7.80<br>דד ד  | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6.                  | 7.8<br>7.8    | 0.0                   | 0.0        |
| +E+1.60H             |                |                  | 4.00         | 2.75         | 2.75          | 7.65         |              | 7.77          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6.                  |               | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 4.13             | 4.00         | 2.58         |               | 7.91         | 0.11         | 7.75          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Regd 9.6.                  | 7.7           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 4.23             | 4.00         | 2.41         | 2.41          | 8.16         | 0.10         | 7.72          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Regd 9.6.                  | 7.7           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 4.33<br>4.43     | 4.00         | 2.24         | 2.24<br>2.07  | 8.39         | 0.09<br>0.08 | 7.70<br>7.68  | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Regd 9.6.                  | 7.7<br>7.7    | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 4.43<br>4.52     | 4.00<br>4.00 | 2.07         |               | 8.60<br>8.80 | 0.08         | 7.66          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Regd 9.6.                  | 7.7<br>7.7    | 0.0                   | 0.0        |
| +E+1.60H             | 1              |                  |              | 1.90         |               |              |              |               | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6.                  | 7.7           | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 4.62<br>4.72     | 4.00<br>4.00 | 1.73<br>1.56 |               | 8.97<br>9.14 | 0.06<br>0.06 | 7.64<br>7.63  | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6.<br>lot Reqd 9.6. | 7.6<br>7.6    | 0.0<br>0.0            | 0.0<br>0.0 |
| +E+1.60H             | 1              | 4.72<br>4.82     | 4.00<br>4.00 | 1.50         | 1.30          | 9.14<br>9.28 | 0.06         | 7.63<br>7.61  | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6.                  | 7.0<br>7.6    | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 4.82<br>4.92     | 4.00<br>4.00 | 1.39         |               | 9.28<br>9.41 | 0.05         | 7.61          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6.                  | 7.0<br>7.6    | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 4.92<br>5.02     | 4.00<br>4.00 | 1.22         | 1.22          | 9.41         | 0.04         | 7.59          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6.                  | 7.0<br>7.6    | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 5.02<br>5.11     | 4.00<br>4.00 | 0.88         | 0.88          | 9.52<br>9.62 | 0.04         | 7.58          | Vu < PhiVc/2<br>Vu < PhiVc/2 |                                | 7.0<br>7.6    | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 5.11<br>5.21     | 4.00<br>4.00 | 0.88         | 0.88          | 9.02<br>9.69 | 0.03         | 7.55          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6.<br>lot Reqd 9.6. | 7.0<br>7.5    | 0.0                   | 0.0        |
| +E+1.60H             | 1              | 5.21<br>5.31     | 4.00<br>4.00 |              |               | 9.69<br>9.76 | 0.02         |               | Vu < PhiVc/2<br>Vu < PhiVc/2 |                                |               |                       |            |
| +E+1.60H             |                |                  |              | 0.54         |               |              |              | 7.54          |                              | lot Reqd 9.6.                  | 7.5<br>7.5    | 0.0                   | 0.0        |
|                      | 1              | 5.41             | 4.00         | 0.37         | 0.37          | 9.80         | 0.01         | 7.52          | Vu < PhiVc/2                 | lot Reqd 9.6.                  | 7.5           | 0.0                   | 0.0        |



Lic. # : KW-06005835

DESCRIPTION: Retaining Wall Span Horizonal

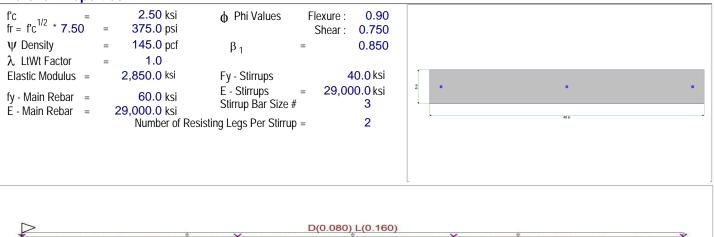
| Load Combination | Span<br>Number | Distance     | 'd'<br>(in) | Vu<br>Actual | (k)<br>Docian | Mu<br>(k-ft) | d*Vu/Mu | Phi*Vc       | Comment                            | Phi*Vs           | Phi*Vn | Spacing (<br>Req'd Su | (in) |
|------------------|----------------|--------------|-------------|--------------|---------------|--------------|---------|--------------|------------------------------------|------------------|--------|-----------------------|------|
| +E+1.60H         |                | (ft)         | (in)        |              | Design        |              | 0.01    | (k)          | Vu < PhiVc/2                       | (k)              | (k)    |                       |      |
| +E+1.60H         | 1              | 5.51<br>5.61 | 4.00        | 0.20         | 0.20          | 9.83<br>9.84 |         | 7.51         | Vu < PhiVc/2<br>Vu < PhiVc/2       | lot Reqd 9.6.    | 7.5    | 0.0                   | 0.0  |
| +E+1.60H         | 1              |              | 4.00        | 0.03         | 0.03          |              | 0.00    | 7.50         | Vu < PhiVc/2<br>Vu < PhiVc/2       | lot Reqd 9.6.    |        | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 5.70         | 4.00        | -0.14        | 0.14          | 9.84         | 0.00    | 7.50         | Vu < PhiVc/2<br>Vu < PhiVc/2       | lot Reqd 9.6.    | 7.5    | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 5.80         | 4.00        | -0.31        | 0.31          | 9.81         | 0.01    | 7.52         | Vu < PhiVc/2<br>Vu < PhiVc/2       | lot Reqd 9.6.    | 7.5    | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 5.90         | 4.00        | -0.48        | 0.48          | 9.78         | 0.02    | 7.53         | Vu < PhiVc/2<br>Vu < PhiVc/2       | lot Reqd 9.6.    | 7.5    | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 6.00         | 4.00        | -0.65        | 0.65          | 9.72         |         | 7.54         | Vu < PhiVc/2<br>Vu < PhiVc/2       | lot Reqd 9.6.    | 7.5    | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 6.10         | 4.00        | -0.82        | 0.82          | 9.65         |         | 7.56         | Vu < PhiVc/2<br>Vu < PhiVc/2       | lot Reqd 9.6.    | 7.6    | 0.0                   | 0.0  |
| +E+1.60H         | -              | 6.20         | 4.00        | -0.99        | 0.99          | 9.56         | 0.03    | 7.57         | Vu < PhiVc/2<br>Vu < PhiVc/2       | lot Reqd 9.6.    | 7.6    | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 6.30         | 4.00        | -1.16        | 1.16          | 9.45         | 0.04    | 7.59         | Vu < PhiVc/2<br>Vu < PhiVc/2       | lot Reqd 9.6.    |        | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 6.39         | 4.00        | -1.33        | 1.33          | 9.33         |         | 7.60         | Vu < PhiVc/2<br>Vu < PhiVc/2       | lot Reqd 9.6.    |        | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 6.49         | 4.00        | -1.50        | 1.50          | 9.19         | 0.05    | 7.62         | Vu < PhiVc/2<br>Vu < PhiVc/2       | lot Reqd 9.6.    | 7.6    | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 6.59         | 4.00        | -1.67        | 1.67          | 9.04         | 0.06    | 7.64         | Vu < PhiVc/2<br>Vu < PhiVc/2       | lot Reqd 9.6.    | 7.6    | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 6.69         | 4.00        | -1.84        | 1.84          | 8.86         | 0.07    | 7.65         | Vu < PhiVc/2<br>Vu < PhiVc/2       | lot Reqd 9.6.    |        | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 6.79         | 4.00        | -2.01        | 2.01          | 8.68         | 0.08    | 7.67         | Vu < PhiVc/2<br>Vu < PhiVc/2       | lot Reqd 9.6.    | 7.7    | 0.0                   | 0.0  |
| +E+1.60H         | -              | 6.89         | 4.00        | -2.18        | 2.18          | 8.47         | 0.09    | 7.69         | Vu < PhiVc/2<br>Vu < PhiVc/2       | lot Reqd 9.6.    |        | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 6.98         | 4.00        | -2.35        | 2.35          | 8.25         | 0.09    | 7.71         | Vu < PhiVc/2<br>Vu < PhiVc/2       | lot Reqd 9.6.    | 7.7    | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 7.08         | 4.00        | -2.52        | 2.52          | 8.01         | 0.10    | 7.74         |                                    | lot Reqd 9.6.    | 7.7    | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 7.18         | 4.00        | -2.69        | 2.69          | 7.75         |         | 7.76         | Vu < PhiVc/2                       | lot Reqd 9.6.    |        | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 7.28         | 4.00        | -2.86        | 2.86          | 7.48         | 0.13    | 7.79         | Vu < PhiVc/2                       | lot Reqd 9.6.    | 7.8    | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 7.38         | 4.00        | -3.03        | 3.03          | 7.19         | 0.14    | 7.82         | Vu < PhiVc/2<br>Vu < PhiVc/2       | lot Reqd 9.6.    | 7.8    | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 7.48         | 4.00        | -3.20        | 3.20          | 6.88         | 0.15    | 7.85         | Vu < PhiVc/2<br>Vu < PhiVc/2       | lot Reqd 9.6.    | 7.9    | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 7.57         | 4.00        | -3.37        | 3.37          | 6.56         | 0.17    | 7.89         | Vu < PhiVc/2<br>Vu < PhiVc/2       | lot Reqd 9.6.    | 7.9    | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 7.67         | 4.00        | -3.54        | 3.54          | 6.22         |         | 7.93         | Vu < PhiVc/2<br>Vu < PhiVc/2       | lot Reqd 9.6.    | 7.9    | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 7.77         | 4.00        | -3.71        | 3.71          | 5.86         | 0.21    | 7.98         | Vu < PhiVc/2<br>Vu < PhiVc/2       | lot Reqd 9.6.    | 8.0    | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 7.87         | 4.00        | -3.88        | 3.88          | 5.49         | 0.24    | 8.04         | Vu < PhiVc/2<br>Vu < PhiVc/2       | lot Reqd 9.6.    |        | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 7.97         | 4.00        | -4.05        | 4.05          | 5.10         | 0.26    | 8.11         | PhiVc/2 < Vu <=                    | lot Reqd 9.6.    |        | 0.0                   | 0.0  |
| +E+1.60H         | -              | 8.07         | 4.00        | -4.22        | 4.22          | 4.70         |         | 8.19         | PhiVc/2 < Vu <=<br>PhiVc/2 < Vu <= | It<=10", Not I   |        | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 8.16         | 4.00        | -4.39        | 4.39          | 4.27         | 0.34    | 8.29         | PhiVc/2 < Vu <=<br>PhiVc/2 < Vu <= | It<=10", Not I   |        | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 8.26         | 4.00        | -4.56        | 4.56          | 3.83         | 0.40    | 8.41         | PhiVc/2 < Vu <=<br>PhiVc/2 < Vu <= |                  |        | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 8.36         | 4.00        | -4.73        | 4.73          | 3.38         | 0.47    | 8.58         | PhiVc/2 < Vu <=<br>PhiVc/2 < Vu <= |                  |        | 0.0                   | 0.0  |
| +E+1.60H         | -              | 8.46         | 4.00        | -4.90        | 4.90          | 2.90         |         | 8.80         | PhiVc/2 < Vu <=<br>PhiVc/2 < Vu <= |                  |        | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 8.56         | 4.00        | -5.07        | 5.07<br>5.24  | 2.41         | 0.70    | 9.12         | PhiVc/2 < Vu <=<br>PhiVc/2 < Vu <= |                  |        | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 8.66<br>9.75 | 4.00        | -5.24        | 5.24<br>5.41  | 1.91         | 0.92    | 9.62         | PhiVc/2 < Vu <=<br>PhiVc/2 < Vu <= |                  |        | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 8.75<br>0.05 | 4.00        | -5.41        | 5.41          | 1.38         | 1.00    | 9.82<br>9.82 |                                    |                  |        | 0.0                   | 0.0  |
| +E+1.60H         | 1              | 8.85<br>9.05 | 4.00        | -5.58        | 5.58<br>5.75  | 0.84         | 1.00    |              | PhiVc/2 < Vu <=<br>PhiVc/2 < Vu <= | It<=10", Not I   |        | 0.0                   | 0.0  |
|                  |                | 8.95         | 4.00        | -5.75        | 5.75          | 0.28         | 1.00    | 9.82         | F111VC/2 < VU <=                   | IL<= IU , INOT I | 9.8    | 0.0                   | 0.0  |
| Maximum Forces   | s & Stresses   | TOR LO       | ad C        | ombina       | tions         |              |         |              |                                    |                  |        |                       |      |

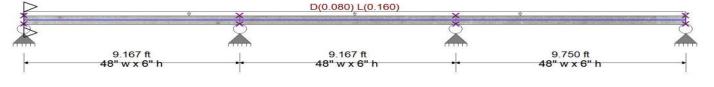
| Load Combination            |     |                    |        | Location (ft)   | Bending          | Stress Results ( ) | <-ft )           |                       |
|-----------------------------|-----|--------------------|--------|-----------------|------------------|--------------------|------------------|-----------------------|
| Segment                     |     | S                  | pan #  | along Beam      | Mu : Max         | Phi*Mnx            | Stress Rat       | io                    |
| MAXimum BENDING Envelope    |     |                    |        |                 |                  |                    |                  |                       |
| Span # 1                    |     |                    | 1      | 9.000           | 9.84             | 10.31              | 0.95             |                       |
| +1.60H                      |     |                    |        |                 |                  |                    |                  |                       |
| Span # 1                    |     |                    | 1      | 9.000           | 9.02             | 10.31              | 0.87             |                       |
| +E+1.60H                    |     |                    |        |                 |                  |                    |                  |                       |
| Span # 1                    |     |                    | 1      | 9.000           | 9.84             | 10.31              | 0.95             |                       |
| +E+0.90H                    |     |                    |        |                 |                  |                    |                  |                       |
| Span # 1                    |     |                    | 1      | 9.000           | 5.89             | 10.31              | 0.57             |                       |
| Overall Maximum Deflections | s   |                    |        |                 |                  |                    |                  |                       |
| Load Combination Sp         | pan | Max. "-" Defl (in) | Locati | on in Span (ft) | Load Combination | Max                | <. "+" Defl (in) | Location in Span (ft) |
| +0.70E+H                    | 1   | 0.0226             |        | 5.090           |                  |                    | 0.0000           | 0.000                 |



Printed: 6 JUN 2022, 7:26AM File: Calcs.ec6

**Design OK** 


Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS


DESCRIPTION: Basement Slab-on-Grade (3-Span)

# **CODE REFERENCES**

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16

# **Material Properties**





## **Cross Section & Reinforcing Details**

Rectangular Section, Width = 48.0 in, Height = 6.0 in Span #1 Reinforcing.... 3-#4 at 3.0 in from Bottom, from 0.0 to 9.167 ft in this span Span #2 Reinforcing.... 3-#4 at 3.0 in from Bottom, from 0.0 to 9.167 ft in this span Span #3 Reinforcing.... 3-#4 at 3.0 in from Bottom, from 0.0 to 9.750 ft in this span

Beam self weight calculated and added to loads

Loads on all spans...

D = 0.020, L = 0.040

Uniform Load on ALL spans : D = 0.020, L = 0.040 ksf, Tributary Width = 4.0 ft

## **DESIGN SUMMARY**

| Maximum Bending Stress Ratio =<br>Section used for this span<br>Mu : Applied | 0.893:1<br>Typical Section<br>-6.807 k-ft | Maximum Deflection<br>Max Downward Transient Deflection<br>Max Upward Transient Deflection | 0.010 in Ratio = 11989 >= 360<br>-0.005 in Ratio = 20473 >= 360 |
|------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Mn * Phi : Allowable                                                         | 7.624 k-ft                                | Max Downward Total Deflection                                                              | 0.026 in Ratio = $4453 >= 180$                                  |
| Location of maximum on span                                                  | 0.000 ft                                  | Max Upward Total Deflection                                                                | -0.005 in Ratio = 20440 >=180                                   |
| Span # where maximum occurs                                                  | Span # 3                                  |                                                                                            |                                                                 |
|                                                                              |                                           |                                                                                            |                                                                 |

| Vertical Reactions        |           |           | Support n | otation : Far lef |
|---------------------------|-----------|-----------|-----------|-------------------|
| Load Combination          | Support 1 | Support 2 | Support 3 | Support 4         |
| Overall MAXimum           | 2.029     | 5.443     | 5.718     | 2.149             |
| Overall MINimum           | 0.028     | -0.171    | -0.143    | 0.022             |
| +D+H                      | 1.365     | 3.681     | 3.891     | 1.454             |
| +D+L+H, LL Comb Run (**L) | 1.393     | 3.510     | 4.921     | 2.127             |
| +D+L+H, LL Comb Run (*L*) | 1.291     | 4.491     | 4.689     | 1.387             |
| +D+L+H, LL Comb Run (*LL) | 1.320     | 4.321     | 5.718     | 2.060             |
| +D+L+H, LL Comb Run (L**) | 2.001     | 4.633     | 3.748     | 1.476             |



# 197

Printed: 6 JUN 2022, 7:26AM File: Calcs.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

DESCRIPTION: Basement Slab-on-Grade (3-Span)

| Vertical Reactions                                                       |                |                |                | otation : Far left is |
|--------------------------------------------------------------------------|----------------|----------------|----------------|-----------------------|
| Load Combination                                                         | Support 1      | Support 2      | Support 3      | Support 4             |
| +D+L+H, LL Comb Run (L*L)                                                | 2.029          | 4.462          | 4.777          | 2.149                 |
| +D+L+H, LL Comb Run (LL*)                                                | 1.927          | 5.443          | 4.545          | 1.409                 |
| +D+L+H, LL Comb Run (LLL)                                                | 1.955          | 5.273          | 5.574          | 2.082                 |
| +D+Lr+H, LL Comb Run (**L)                                               | 1.365          | 3.681          | 3.891          | 1.454                 |
| +D+Lr+H, LL Comb Run (*L*)                                               | 1.365          | 3.681          | 3.891          | 1.454                 |
| +D+Lr+H, LL Comb Run (*LL)                                               | 1.365          | 3.681          | 3.891          | 1.454                 |
| +D+Lr+H, LL Comb Run (L**)                                               | 1.365          | 3.681          | 3.891          | 1.454                 |
| +D+Lr+H, LL Comb Run (L*L)                                               | 1.365          | 3.681          | 3.891          | 1.454                 |
| +D+Lr+H, LL Comb Run (LL*)                                               | 1.365          | 3.681          | 3.891          | 1.454                 |
| +D+Lr+H, LL Comb Run (LLL)                                               | 1.365          | 3.681          | 3.891          | 1.454                 |
| +D+S+H                                                                   | 1.365          | 3.681          | 3.891          | 1.454                 |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 1.386          | 3.553          | 4.663          | 1.958                 |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 1.310          | 4.289          | 4.489          | 1.404                 |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 1.331          | 4.161          | 5.261          | 1.908                 |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 1.842          | 4.395          | 3.784          | 1.470                 |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 1.863          | 4.267          | 4.556          | 1.975                 |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 1.786          | 5.003          | 4.382          | 1.420                 |
| +D+0.750Lr+0.750L+H, LL Comb Run (                                       | 1.808          | 4.875          | 5.154          | 1.925                 |
| +D+0.750L+0.750S+H, LL Comb Run (*                                       | 1.386          | 3.553          | 4.663          | 1.958                 |
| +D+0.750L+0.750S+H, LL Comb Run (*                                       | 1.310          | 4.289          | 4.489          | 1.404                 |
| +D+0.750L+0.750S+H, LL Comb Run (*                                       | 1.310          | 4.209          | 5.261          | 1.404                 |
| +D+0.750L+0.750S+H, LL Comb Run (L                                       | 1.331          | 4.101          | 3.784          | 1.908                 |
| +D+0.750L+0.750S+H, LL Comb Run (L<br>+D+0.750L+0.750S+H, LL Comb Run (L | 1.842          | 4.395<br>4.267 | 3.784<br>4.556 | 1.470                 |
|                                                                          |                |                |                |                       |
| +D+0.750L+0.750S+H, LL Comb Run (L                                       | 1.786          | 5.003          | 4.382<br>5.154 | 1.420                 |
| +D+0.750L+0.750S+H, LL Comb Run (L                                       | 1.808<br>1.245 | 4.875          | 5.154          | 1.925<br>1.454        |
| +D+0.60W+H                                                               | 1.365          | 3.681          | 3.891          | 1.454                 |
| +D+0.750Lr+0.750L+0.450W+H, LL Com                                       | 1.386          | 3.553          | 4.663          | 1.958                 |
| +D+0.750Lr+0.750L+0.450W+H, LL Com                                       | 1.310          | 4.289          | 4.489          | 1.404                 |
| +D+0.750Lr+0.750L+0.450W+H, LL Com                                       | 1.331          | 4.161          | 5.261          | 1.908                 |
| +D+0.750Lr+0.750L+0.450W+H, LL Com                                       | 1.842          | 4.395          | 3.784          | 1.470                 |
| +D+0.750Lr+0.750L+0.450W+H, LL Com                                       | 1.863          | 4.267          | 4.556          | 1.975                 |
| +D+0.750Lr+0.750L+0.450W+H, LL Com                                       | 1.786          | 5.003          | 4.382          | 1.420                 |
| +D+0.750Lr+0.750L+0.450W+H, LL Com                                       | 1.808          | 4.875          | 5.154          | 1.925                 |
| +D+0.750L+0.750S+0.450W+H, LL Comb                                       | 1.386          | 3.553          | 4.663          | 1.958                 |
| +D+0.750L+0.750S+0.450W+H, LL Comb                                       | 1.310          | 4.289          | 4.489          | 1.404                 |
| +D+0.750L+0.750S+0.450W+H, LL Comb                                       | 1.331          | 4.161          | 5.261          | 1.908                 |
| +D+0.750L+0.750S+0.450W+H, LL Comb                                       | 1.842          | 4.395          | 3.784          | 1.470                 |
| +D+0.750L+0.750S+0.450W+H, LL Comb                                       | 1.863          | 4.267          | 4.556          | 1.975                 |
| +D+0.750L+0.750S+0.450W+H, LL Comb                                       | 1.786          | 5.003          | 4.382          | 1.420                 |
| +D+0.750L+0.750S+0.450W+H, LL Comb                                       | 1.808          | 4.875          | 5.154          | 1.925                 |
| +0.60D+0.60W+0.60H                                                       | 0.819          | 2.209          | 2.335          | 0.872                 |
| +D+0.70E+0.60H                                                           | 1.365          | 3.681          | 3.891          | 1.454                 |
| +D+0.750L+0.750S+0.5250E+H, LL Com                                       | 1.386          | 3.553          | 4.663          | 1.958                 |
| +D+0.750L+0.750S+0.5250E+H, LL Com                                       | 1.310          | 4.289          | 4.489          | 1.404                 |
| +D+0.750L+0.750S+0.5250E+H, LL Com                                       | 1.331          | 4.161          | 5.261          | 1.908                 |
| +D+0.750L+0.750S+0.5250E+H, LL Com                                       | 1.842          | 4.101          | 3.784          | 1.470                 |
| +D+0.750L+0.750S+0.5250E+H, LL Com                                       |                | 4.395<br>4.267 | 3.784<br>4.556 |                       |
|                                                                          | 1.863          |                |                | 1.975                 |
| +D+0.750L+0.750S+0.5250E+H, LL Com                                       | 1.786          | 5.003          | 4.382<br>5.154 | 1.420                 |
| +D+0.750L+0.750S+0.5250E+H, LL Com                                       | 1.808          | 4.875          | 5.154          | 1.925                 |
| +0.60D+0.70E+H                                                           | 0.819          | 2.209          | 2.335          | 0.872                 |
| D Only                                                                   | 1.365          | 3.681          | 3.891          | 1.454                 |
| L Only, LL Comb Run (**L)                                                | 0.028          | -0.171         | 1.029          | 0.673                 |
| L Only, LL Comb Run (*L*)                                                | -0.074         | 0.810          | 0.797          | -0.067                |
| L Only, LL Comb Run (*LL)                                                | -0.045         | 0.640          | 1.826          | 0.606                 |
| L Only, LL Comb Run (L**)                                                | 0.636          | 0.952          | -0.143         | 0.022                 |
| L Only, LL Comb Run (L*L)                                                | 0.664          | 0.781          | 0.886          | 0.695                 |
|                                                                          |                |                |                |                       |
| L Only, LL Comb Run (LL*)                                                | 0.562          | 1.762          | 0.654          | -0.044                |
| L Only, LL Comb Run (LL*)<br>L Only, LL Comb Run (LLL)                   | 0.562<br>0.590 | 1.762<br>1.592 | 0.654<br>1.683 | -0.044<br>0.629       |



Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

DESCRIPTION: Basement Slab-on-Grade (3-Span)

# **Shear Stirrup Requirements**

Entire Beam Span Length : Vu < PhiVc/2, Req'd Vs = Not Reqd 9.6.3.1, use #3 stirrups spaced at 0.000 in

### Maximum Forces & Stresses for Load Combinations

| Load Combination                                        | -      | Location (ft)  | Bending Stress Results (k-ft) |              |              |  |  |
|---------------------------------------------------------|--------|----------------|-------------------------------|--------------|--------------|--|--|
| Segment                                                 | Span # | along Beam     | Mu : Max                      | Phi*Mnx      | Stress Ratio |  |  |
| IAXimum BENDING Envelope                                |        |                |                               |              |              |  |  |
| Span # 1                                                | 1      | 9.167          | -5.92                         | 7.62         | 0.78         |  |  |
| Span # 2                                                | 2      | 9.167          | -6.60                         | 7.62         | 0.87         |  |  |
| Span # 3<br>1.40D+1.60H                                 | 3      | 9.750          | -6.81                         | 7.62         | 0.89         |  |  |
| Span # 1                                                | 1      | 9.167          | -4.07                         | 7.62         | 0.53         |  |  |
| Span # 2                                                | 2      | 9.167          | -4.63                         | 7.62         | 0.61         |  |  |
| Span # 3                                                | 3      | 9.750          | -4.78                         | 7.62         | 0.63         |  |  |
| 1.20D+0.50Lr+1.60L+1.60H, LL Comb Run (**L)             | 0      | 7.700          | 1.70                          | 1.02         | 0.00         |  |  |
| Span # 1                                                | 1      | 9.167          | 3.19                          | 7.62         | 0.42         |  |  |
| Span # 2                                                | 2      | 9.167          | -5.63                         | 7.62         | 0.74         |  |  |
| Span # 3                                                | 3      | 9.750          | -5.77                         | 7.62         | 0.76         |  |  |
| 1.20D+0.50Lr+1.60L+1.60H, LL Comb Run (*L*)             |        |                |                               |              |              |  |  |
| Span # 1                                                | 1      | 9.167          | -4.57                         | 7.62         | 0.60         |  |  |
| Span # 2                                                | 2      | 9.167          | -4.94                         | 7.62         | 0.65         |  |  |
| Span # 3                                                | 3      | 9.750          | -5.14                         | 7.62         | 0.67         |  |  |
| 1.20D+0.50Lr+1.60L+1.60H, LL Comb Run (*LL)             | 4      | 0 1 / 7        |                               | 7 / 0        | 0.57         |  |  |
| Span # 1                                                | 1      | 9.167          | -4.15                         | 7.62         | 0.54         |  |  |
| Span # 2                                                | 2<br>3 | 9.167          | -6.60<br>6 91                 | 7.62         | 0.87         |  |  |
| Span # 3<br>1.20D+0.50Lr+1.60L+1.60H, LL Comb Run (L**) | 3      | 9.750          | -6.81                         | 7.62         | 0.89         |  |  |
| Span # 1                                                | 1      | 9.167          | 5.04                          | 7.62         | 0.66         |  |  |
| Span # 2                                                | 2      | 9.167          | -5.07                         | 7.62         | 0.67         |  |  |
| Span # 2<br>Span # 3                                    | 2      | 9.750          | -3.75                         | 7.62         | 0.49         |  |  |
| 1.20D+0.50Lr+1.60L+1.60H, LL Comb Run (L*L)             | J      | 7.750          | -3.13                         | 1.02         | 7 ד.0        |  |  |
| Span # 1                                                | 1      | 9.167          | 5.21                          | 7.62         | 0.68         |  |  |
| Span # 2                                                | 2      | 9.167          | -5.29                         | 7.62         | 0.69         |  |  |
| Span # 3                                                | 3      | 9.750          | 5.83                          | 7.62         | 0.76         |  |  |
| 1.20D+0.50Lr+1.60L+1.60H, LL Comb Run (LL*)             |        |                |                               |              |              |  |  |
| Span # 1                                                | 1      | 9.167          | -5.92                         | 7.62         | 0.78         |  |  |
| Span # 2                                                | 2      | 9.167          | -6.16                         | 7.62         | 0.81         |  |  |
| Span # 3                                                | 3      | 9.750          | -4.79                         | 7.62         | 0.63         |  |  |
| 1.20D+0.50Lr+1.60L+1.60H, LL Comb Run (LLL)             |        |                |                               |              |              |  |  |
| Span # 1                                                | 1      | 9.167          | -5.50                         | 7.62         | 0.72         |  |  |
| Span # 2                                                | 2      | 9.167          | -6.26                         | 7.62         | 0.82         |  |  |
| Span # 3                                                | 3      | 9.750          | -6.46                         | 7.62         | 0.85         |  |  |
| -1.20D+1.60L+0.50S+1.60H, LL Comb Run (**L)             | 1      | 0 1 / 7        | 2.10                          | 7 / 2        | 0.40         |  |  |
| Span # 1                                                | 1      | 9.167<br>9.167 | 3.19<br>-5.63                 | 7.62<br>7.62 | 0.42<br>0.74 |  |  |
| Span # 2<br>Span # 3                                    | 2<br>3 | 9.750          | -5.03                         | 7.62         | 0.74         |  |  |
| .1.20D+1.60L+0.50S+1.60H, LL Comb Run (*L*)             | 3      | 9.750          | -3.77                         | 7.02         | 0.70         |  |  |
| Span # 1                                                | 1      | 9.167          | -4.57                         | 7.62         | 0.60         |  |  |
| Span # 2                                                | 2      | 9.167          | -4.94                         | 7.62         | 0.65         |  |  |
| Span # 3                                                | 3      | 9.750          | -5.14                         | 7.62         | 0.67         |  |  |
| +1.20D+1.60L+0.50S+1.60H, LL Comb Run (*LL)             | -      |                |                               | =            |              |  |  |
| Span # 1                                                | 1      | 9.167          | -4.15                         | 7.62         | 0.54         |  |  |
| Span # 2                                                | 2      | 9.167          | -6.60                         | 7.62         | 0.87         |  |  |
| Span # 3                                                | 3      | 9.750          | -6.81                         | 7.62         | 0.89         |  |  |
| 1.20D+1.60L+0.50S+1.60H, LL Comb Run (L**)              |        |                |                               |              |              |  |  |
| Span # 1                                                | 1      | 9.167          | 5.04                          | 7.62         | 0.66         |  |  |
| Span # 2                                                | 2      | 9.167          | -5.07                         | 7.62         | 0.67         |  |  |
| Span # 3                                                | 3      | 9.750          | -3.75                         | 7.62         | 0.49         |  |  |
| 1.20D+1.60L+0.50S+1.60H, LL Comb Run (L*L)              | 1      | 0 1/7          | F 04                          | 7/0          | 0.40         |  |  |
| Span # 1                                                | 1      | 9.167          | 5.21                          | 7.62         | 0.68         |  |  |
| Span # 2<br>Span # 3                                    | 2<br>3 | 9.167<br>9.750 | -5.29<br>5.83                 | 7.62<br>7.62 | 0.69<br>0.76 |  |  |
| 3/200+1.60L+0.50S+1.60H, LL Comb Run (LL*)              | 3      | 7.700          | 0.03                          | 1.02         | 0.70         |  |  |
| Span # 1                                                | 1      | 9.167          | -5.92                         | 7.62         | 0.78         |  |  |
| Span # 2                                                | 2      | 9.167          | -6.16                         | 7.62         | 0.78         |  |  |
| Span # 2<br>Span # 3                                    | 2      | 9.750          | -4.79                         | 7.62         | 0.63         |  |  |
| -1.20D+1.60L+0.50S+1.60H, LL Comb Run (LLL)             | J      | 7.750          | - 1.7                         | 1.02         | 0.00         |  |  |
| Span # 1                                                | 1      | 9.167          | -5.50                         | 7.62         | 0.72         |  |  |
| Span # 2                                                | 2      | 9.167          | -6.26                         | 7.62         | 0.82         |  |  |
| Span # 3                                                | 3      | 9.750          | -6.46                         | 7.62         | 0.85         |  |  |
| +1.20D+1.60Lr+L+1.60H, LL Comb Run (**L)                |        |                |                               |              |              |  |  |



# Lic. # : KW-06005835

# DESCRIPTION: Basement Slab-on-Grade (3-Span)

| bad Combination                                        |        | Location (ft)  | Bending Stress Results (k-ft) |              |              |  |  |
|--------------------------------------------------------|--------|----------------|-------------------------------|--------------|--------------|--|--|
| Segment                                                | Span # | along Beam     | Mu : Max                      | Phi*Mnx      | Stress Ratio |  |  |
| Span # 1                                               | 1      | 9.167          | -3.23                         | 7.62         | 0.42         |  |  |
| Span # 2                                               | 2      | 9.167          | -5.01                         | 7.62         | 0.66         |  |  |
| Span # 3                                               | 3      | 9.750          | -5.14                         | 7.62         | 0.67         |  |  |
| .20D+1.60Lr+L+1.60H, LL Comb Run (*L*)                 |        |                |                               | 7 / 0        | 0.55         |  |  |
| Span # 1                                               | 1      | 9.167          | -4.16                         | 7.62         | 0.55         |  |  |
| Span # 2                                               | 2      | 9.167          | -4.58                         | 7.62         | 0.60         |  |  |
| Span # 3<br>.20D+1.60Lr+L+1.60H, LL Comb Run (*LL)     | 3      | 9.750          | -4.75                         | 7.62         | 0.62         |  |  |
| Span # 1                                               | 1      | 9.167          | -3.91                         | 7.62         | 0.51         |  |  |
| Span # 2                                               | 2      | 9.167          | -5.61                         | 7.62         | 0.74         |  |  |
| Span # 3                                               | 3      | 9.750          | -5.79                         | 7.62         | 0.76         |  |  |
| .20D+1.60Lr+L+1.60H, LL Comb Run (L**)                 | -      |                |                               |              |              |  |  |
| Span # 1                                               | 1      | 9.167          | -4.34                         | 7.62         | 0.57         |  |  |
| Span # 2                                               | 2      | 9.167          | -4.53                         | 7.62         | 0.59         |  |  |
| Span # 3                                               | 3      | 9.750          | -3.88                         | 7.62         | 0.51         |  |  |
| .20D+1.60Lr+L+1.60H, LL Comb Run (L*L)                 |        |                |                               |              |              |  |  |
| Span # 1                                               | 1      | 9.167          | 4.39                          | 7.62         | 0.58         |  |  |
| Span # 2                                               | 2      | 9.167          | -4.80                         | 7.62         | 0.63         |  |  |
| Span # 3                                               | 3      | 9.750          | 4.93                          | 7.62         | 0.65         |  |  |
| .20D+1.60Lr+L+1.60H, LL Comb Run (LL*)                 |        | 0.617          |                               |              | 0.11         |  |  |
| Span # 1                                               | 1      | 9.167          | -5.01                         | 7.62         | 0.66         |  |  |
| Span # 2                                               | 2      | 9.167          | -5.21                         | 7.62         | 0.68         |  |  |
| Span # 3                                               | 3      | 9.750          | -4.53                         | 7.62         | 0.59         |  |  |
| .20D+1.60Lr+L+1.60H, LL Comb Run (LLL)                 | 1      | 0.1/7          | 4.75                          | 7 / 0        | 0.40         |  |  |
| Span # 1<br>Span # 2                                   | 1<br>2 | 9.167<br>9.167 | -4.75<br>-5.40                | 7.62<br>7.62 | 0.62<br>0.71 |  |  |
| Span # 2                                               | 2      |                |                               |              |              |  |  |
| Span # 3<br>.20D+1.60Lr+0.50W+1.60H, LL Comb Run (**L) | 3      | 9.750          | -5.57                         | 7.62         | 0.73         |  |  |
| Span # 1                                               | 1      | 9.167          | -3.49                         | 7.62         | 0.46         |  |  |
| Span # 2                                               | 2      | 9.167          | -3.47                         | 7.62         | 0.40         |  |  |
| Span # 3                                               | 3      | 9.750          | -4.10                         | 7.62         | 0.54         |  |  |
| .20D+1.60Lr+0.50W+1.60H, LL Comb Run (*L*)             | 5      | 7.730          | -4.10                         | 1.02         | 0.54         |  |  |
| Span # 1                                               | 1      | 9.167          | -3.49                         | 7.62         | 0.46         |  |  |
| Span # 2                                               | 2      | 9.167          | -3.97                         | 7.62         | 0.52         |  |  |
| Span # 3                                               | 3      | 9.750          | -4.10                         | 7.62         | 0.54         |  |  |
| .20D+1.60Lr+0.50W+1.60H, LL Comb Run (*LL)             | -      |                |                               |              |              |  |  |
| Span # 1                                               | 1      | 9.167          | -3.49                         | 7.62         | 0.46         |  |  |
| Span # 2                                               | 2      | 9.167          | -3.97                         | 7.62         | 0.52         |  |  |
| Span # 3                                               | 3      | 9.750          | -4.10                         | 7.62         | 0.54         |  |  |
| .20D+1.60Lr+0.50W+1.60H, LL Comb Run (L**)             |        |                |                               |              |              |  |  |
| Span # 1                                               | 1      | 9.167          | -3.49                         | 7.62         | 0.46         |  |  |
| Span # 2                                               | 2      | 9.167          | -3.97                         | 7.62         | 0.52         |  |  |
| Span # 3                                               | 3      | 9.750          | -4.10                         | 7.62         | 0.54         |  |  |
| .20D+1.60Lr+0.50W+1.60H, LL Comb Run (L*L)             |        |                |                               |              |              |  |  |
| Span # 1                                               | 1      | 9.167          | -3.49                         | 7.62         | 0.46         |  |  |
| Span # 2                                               | 2      | 9.167          | -3.97                         | 7.62         | 0.52         |  |  |
| Span # 3                                               | 3      | 9.750          | -4.10                         | 7.62         | 0.54         |  |  |
| .20D+1.60Lr+0.50W+1.60H, LL Comb Run (LL*)             | 1      | 0 147          | 2 10                          | 740          | 0.44         |  |  |
| Span # 1<br>Span # 2                                   | 1<br>2 | 9.167<br>9.167 | -3.49<br>-3.97                | 7.62<br>7.62 | 0.46<br>0.52 |  |  |
| Span # 2<br>Span # 3                                   | 2      | 9.167<br>9.750 | -3.97<br>-4.10                | 7.62<br>7.62 | 0.52         |  |  |
| .20D+1.60Lr+0.50W+1.60H, LL Comb Run (LLL)             | 3      | 7.700          | -4.10                         | 1.02         | 0.04         |  |  |
| Span # 1                                               | 1      | 9.167          | -3.49                         | 7.62         | 0.46         |  |  |
| Span # 2                                               | 2      | 9.167          | -3.97                         | 7.62         | 0.40         |  |  |
| Span # 3                                               | 3      | 9.750          | -4.10                         | 7.62         | 0.52         |  |  |
| .20D+L+1.60S+1.60H, LL Comb Run (**L)                  | 5      | 7.700          | 1.10                          | 1.02         | 0.01         |  |  |
| Span # 1                                               | 1      | 9.167          | -3.23                         | 7.62         | 0.42         |  |  |
| Span # 2                                               | 2      | 9.167          | -5.01                         | 7.62         | 0.66         |  |  |
| Span # 3                                               | 3      | 9.750          | -5.14                         | 7.62         | 0.67         |  |  |
| .20D+L+1.60S+1.60H, LL Comb Run (*L*)                  |        |                |                               |              |              |  |  |
| Span # 1                                               | 1      | 9.167          | -4.16                         | 7.62         | 0.55         |  |  |
| Span # 2                                               | 2      | 9.167          | -4.58                         | 7.62         | 0.60         |  |  |
| Span # 3                                               | 3      | 9.750          | -4.75                         | 7.62         | 0.62         |  |  |
| .20D+L+1.60S+1.60H, LL Comb Run (*LL)                  |        |                |                               |              |              |  |  |
| Span # 1                                               | 1      | 9.167          | -3.91                         | 7.62         | 0.51         |  |  |
| Span # 2                                               | 2      | 9.167          | -5.61                         | 7.62         | 0.74         |  |  |
| Span # 3                                               | 3      | 9.750          | -5.79                         | 7.62         | 0.76         |  |  |
|                                                        | 0      |                |                               |              |              |  |  |
| .20D+L+1.60S+1.60H, LL Comb Run (L**)                  | 1      | 9.167          | -4.34                         | 7.62         | 0.57         |  |  |



# Lic. # : KW-06005835

| 1) |
|----|
| 1  |

| Load Combination                                       |        | Location (ft)                           | Bending Stress Results (k-ft) |              |              |  |  |
|--------------------------------------------------------|--------|-----------------------------------------|-------------------------------|--------------|--------------|--|--|
| Segment                                                | Span # | along Beam                              | Mu : Max                      | Phi*Mnx      | Stress Ratio |  |  |
| Span # 2                                               | 2      | 9.167                                   | -4.53                         | 7.62         | 0.59         |  |  |
| Span # 3                                               | 3      | 9.750                                   | -3.88                         | 7.62         | 0.51         |  |  |
| +1.20D+L+1.60S+1.60H, LL Comb Run (L*L)<br>Span # 1    | 1      | 9.167                                   | 4.39                          | 7.62         | 0.58         |  |  |
| Span # 2                                               | 2      | 9.167                                   | -4.80                         | 7.62         | 0.63         |  |  |
| Span # 3                                               | 3      | 9.750                                   | 4.93                          | 7.62         | 0.65         |  |  |
| +1.20D+L+1.60S+1.60H, LL Comb Run (LL*)<br>Span # 1    | 1      | 9.167                                   | -5.01                         | 7.62         | 0.66         |  |  |
| Span # 2                                               | 2      | 9.167                                   | -5.21                         | 7.62         | 0.68         |  |  |
| Span # 3                                               | 3      | 9.750                                   | -4.53                         | 7.62         | 0.59         |  |  |
| +1.20D+L+1.60S+1.60H, LL Comb Run (LLL)                |        |                                         |                               |              |              |  |  |
| Span # 1                                               | 1      | 9.167                                   | -4.75                         | 7.62         | 0.62         |  |  |
| Span # 2<br>Span # 3                                   | 2<br>3 | 9.167<br>9.750                          | -5.40<br>-5.57                | 7.62<br>7.62 | 0.71<br>0.73 |  |  |
| +1.20D+1.60S+0.50W+1.60H                               | Ũ      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0.07                          | 1102         | 0170         |  |  |
| Span # 1                                               | 1      | 9.167                                   | -3.49                         | 7.62         | 0.46         |  |  |
| Span # 2                                               | 2      | 9.167                                   | -3.97                         | 7.62         | 0.52         |  |  |
| Span # 3<br>+1.20D+0.50Lr+L+W+1.60H, LL Comb Run (**L) | 3      | 9.750                                   | -4.10                         | 7.62         | 0.54         |  |  |
| Span # 1                                               | 1      | 9.167                                   | -3.23                         | 7.62         | 0.42         |  |  |
| Span # 2                                               | 2      | 9.167                                   | -5.01                         | 7.62         | 0.66         |  |  |
| Span # 3                                               | 3      | 9.750                                   | -5.14                         | 7.62         | 0.67         |  |  |
| +1.20D+0.50Lr+L+W+1.60H, LL Comb Run (*L*)<br>Span # 1 | 1      | 9.167                                   | -4.16                         | 7.62         | 0.55         |  |  |
| Span # 2                                               | 2      | 9.167                                   | -4.58                         | 7.62         | 0.60         |  |  |
| Span # 3                                               | 3      | 9.750                                   | -4.75                         | 7.62         | 0.62         |  |  |
| +1.20D+0.50Lr+L+W+1.60H, LL Comb Run (*LL)             |        |                                         |                               | - / 0        |              |  |  |
| Span # 1<br>Span # 2                                   | 1<br>2 | 9.167<br>9.167                          | -3.91<br>-5.61                | 7.62<br>7.62 | 0.51<br>0.74 |  |  |
| Span # 3                                               | 2 3    | 9.750                                   | -5.79                         | 7.62         | 0.76         |  |  |
| +1.20D+0.50Lr+L+W+1.60H, LL Comb Run (L**)             | Ũ      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0.77                          | 1102         | 0170         |  |  |
| Span # 1                                               | 1      | 9.167                                   | -4.34                         | 7.62         | 0.57         |  |  |
| Span # 2                                               | 2      | 9.167                                   | -4.53                         | 7.62         | 0.59         |  |  |
| Span # 3<br>+1.20D+0.50Lr+L+W+1.60H, LL Comb Run (L*L) | 3      | 9.750                                   | -3.88                         | 7.62         | 0.51         |  |  |
| Span # 1                                               | 1      | 9.167                                   | 4.39                          | 7.62         | 0.58         |  |  |
| Span # 2                                               | 2      | 9.167                                   | -4.80                         | 7.62         | 0.63         |  |  |
| Span # 3                                               | 3      | 9.750                                   | 4.93                          | 7.62         | 0.65         |  |  |
| +1.20D+0.50Lr+L+W+1.60H, LL Comb Run (LL*)<br>Span # 1 | 1      | 9.167                                   | -5.01                         | 7.62         | 0.66         |  |  |
| Span # 2                                               | 2      | 9.167                                   | -5.21                         | 7.62         | 0.68         |  |  |
| Span # 3                                               | 3      | 9.750                                   | -4.53                         | 7.62         | 0.59         |  |  |
| +1.20D+0.50Lr+L+W+1.60H, LL Comb Run (LLL)             | 1      | 0.1/7                                   | 4.75                          | 7 / 2        | 0.42         |  |  |
| Span # 1<br>Span # 2                                   | 1<br>2 | 9.167<br>9.167                          | -4.75<br>-5.40                | 7.62<br>7.62 | 0.62<br>0.71 |  |  |
| Span # 3                                               | 2      | 9.750                                   | -5.57                         | 7.62         | 0.73         |  |  |
| +1.20D+L+0.50S+W+1.60H, LL Comb Run (**L)              |        |                                         |                               |              |              |  |  |
| Span # 1                                               | 1      | 9.167                                   | -3.23                         | 7.62         | 0.42         |  |  |
| Span # 2<br>Span # 3                                   | 2<br>3 | 9.167<br>9.750                          | -5.01<br>-5.14                | 7.62<br>7.62 | 0.66<br>0.67 |  |  |
| +1.20D+L+0.50S+W+1.60H, LL Comb Run (*L*)              | 5      | 7.750                                   | -3.14                         | 7.02         | 0.07         |  |  |
| Span # 1                                               | 1      | 9.167                                   | -4.16                         | 7.62         | 0.55         |  |  |
| Span # 2                                               | 2      | 9.167                                   | -4.58                         | 7.62         | 0.60         |  |  |
| Span # 3<br>+1.20D+L+0.50S+W+1.60H, LL Comb Run (*LL)  | 3      | 9.750                                   | -4.75                         | 7.62         | 0.62         |  |  |
| Span # 1                                               | 1      | 9.167                                   | -3.91                         | 7.62         | 0.51         |  |  |
| Span # 2                                               | 2      | 9.167                                   | -5.61                         | 7.62         | 0.74         |  |  |
| Span # 3                                               | 3      | 9.750                                   | -5.79                         | 7.62         | 0.76         |  |  |
| +1.20D+L+0.50S+W+1.60H, LL Comb Run (L**)              | 1      | 0 1 4 7                                 | -4.34                         | 7 4 9        | 0.57         |  |  |
| Span # 1<br>Span # 2                                   | 1<br>2 | 9.167<br>9.167                          | -4.34<br>-4.53                | 7.62<br>7.62 | 0.57<br>0.59 |  |  |
| Span # 3                                               | 3      | 9.750                                   | -3.88                         | 7.62         | 0.51         |  |  |
| +1.20D+L+0.50S+W+1.60H, LL Comb Run (L*L)              |        |                                         |                               |              |              |  |  |
| Span # 1                                               | 1      | 9.167                                   | 4.39                          | 7.62         | 0.58         |  |  |
| Span # 2<br>Span # 3                                   | 2<br>3 | 9.167<br>9.750                          | -4.80<br>4.93                 | 7.62<br>7.62 | 0.63<br>0.65 |  |  |
| +1.20D+L+0.50S+W+1.60H, LL Comb Run (LL*)              | J      | 7.750                                   | 4.75                          | 1.02         | 0.00         |  |  |
| Span # 1                                               | 1      | 9.167                                   | -5.01                         | 7.62         | 0.66         |  |  |
| Span # 2                                               | 2      | 9.167                                   | -5.21                         | 7.62         | 0.68         |  |  |
|                                                        |        |                                         |                               |              |              |  |  |



# Printed: 6 JUN 2022, 7:26AM File: Calcs.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

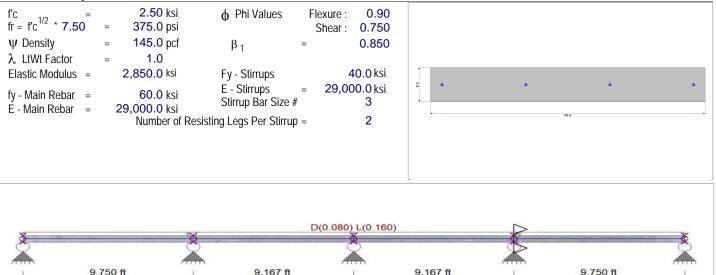
# **Concrete Beam** Lic. # : KW-06005835

# DESCRIPTION: Basement Slab-on-Grade (3-Span)

| Load Combination                          |                      |       | Location (ft)    | Bending Str             | ess Results (k | -ft )         |                       |
|-------------------------------------------|----------------------|-------|------------------|-------------------------|----------------|---------------|-----------------------|
| Segment                                   | S                    | pan # | along Beam       | Mu : Max                | Phi*Mnx        | Stress Rati   | 0                     |
| Span # 3                                  |                      | 3     | 9.750            | -4.53                   | 7.62           | 0.59          |                       |
| +1.20D+L+0.50S+W+1.60H, LL Comb Run (LLL) |                      |       |                  |                         |                |               |                       |
| Span # 1                                  |                      | 1     | 9.167            | -4.75                   | 7.62           | 0.62          |                       |
| Span # 2                                  |                      | 2     | 9.167            | -5.40                   | 7.62           | 0.71          |                       |
| Span # 3                                  |                      | 3     | 9.750            | -5.57                   | 7.62           | 0.73          |                       |
| +0.90D+W+1.60H                            |                      |       |                  |                         |                |               |                       |
| Span # 1                                  |                      | 1     | 9.167            | -2.62                   | 7.62           | 0.34          |                       |
| Span # 2                                  |                      | 2     | 9.167            | -2.98                   | 7.62           | 0.39          |                       |
| Span # 3                                  |                      | 3     | 9.750            | -3.07                   | 7.62           | 0.40          |                       |
| +1.20D+L+0.20S+E+1.60H, LL Comb Run (**L) |                      |       |                  |                         |                |               |                       |
| Span # 1                                  |                      | 1     | 9.167            | -3.23                   | 7.62           | 0.42          |                       |
| Span # 2                                  |                      | 2     | 9.167            | -5.01                   | 7.62           | 0.66          |                       |
| Span # 3                                  |                      | 3     | 9.750            | -5.14                   | 7.62           | 0.67          |                       |
| +1.20D+L+0.20S+E+1.60H, LL Comb Run (*L*) |                      |       |                  |                         |                |               |                       |
| Span # 1                                  |                      | 1     | 9.167            | -4.16                   | 7.62           | 0.55          |                       |
| Span # 2                                  |                      | 2     | 9.167            | -4.58                   | 7.62           | 0.60          |                       |
| Span # 3                                  |                      | 3     | 9.750            | -4.75                   | 7.62           | 0.62          |                       |
| +1.20D+L+0.20S+E+1.60H, LL Comb Run (*LL) |                      |       |                  |                         |                |               |                       |
| Span # 1                                  |                      | 1     | 9.167            | -3.91                   | 7.62           | 0.51          |                       |
| Span # 2                                  |                      | 2     | 9.167            | -5.61                   | 7.62           | 0.74          |                       |
| Span # 3                                  |                      | 3     | 9.750            | -5.79                   | 7.62           | 0.76          |                       |
| +1.20D+L+0.20S+E+1.60H, LL Comb Run (L**) |                      |       |                  |                         |                |               |                       |
| Span # 1                                  |                      | 1     | 9.167            | -4.34                   | 7.62           | 0.57          |                       |
| Span # 2                                  |                      | 2     | 9.167            | -4.53                   | 7.62           | 0.59          |                       |
| Span # 3                                  |                      | 3     | 9.750            | -3.88                   | 7.62           | 0.51          |                       |
| +1.20D+L+0.20S+E+1.60H, LL Comb Run (L*L) |                      |       |                  | 6.00                    | = / 0          |               |                       |
| Span # 1                                  |                      | 1     | 9.167            | 4.39                    | 7.62           | 0.58          |                       |
| Span # 2                                  |                      | 2     | 9.167            | -4.80                   | 7.62           | 0.63          |                       |
| Span # 3                                  |                      | 3     | 9.750            | 4.93                    | 7.62           | 0.65          |                       |
| +1.20D+L+0.20S+E+1.60H, LL Comb Run (LL*) |                      |       | 0.4/7            | 5.04                    | 7 ( 0          | o / /         |                       |
| Span # 1                                  |                      | 1     | 9.167            | -5.01                   | 7.62           | 0.66          |                       |
| Span # 2                                  |                      | 2     | 9.167            | -5.21                   | 7.62           | 0.68          |                       |
| Span # 3                                  |                      | 3     | 9.750            | -4.53                   | 7.62           | 0.59          |                       |
| +1.20D+L+0.20S+E+1.60H, LL Comb Run (LLL) |                      | 1     | 0.1/7            | 4.75                    | 7 / 2          | 0 ( )         |                       |
| Span # 1                                  |                      | 1     | 9.167            | -4.75                   | 7.62           | 0.62          |                       |
| Span # 2                                  |                      | 2     | 9.167            | -5.40                   | 7.62           | 0.71          |                       |
| Span # 3                                  |                      | 3     | 9.750            | -5.57                   | 7.62           | 0.73          |                       |
| +0.90D+E+0.90H                            |                      | 1     | 0.1/7            | 2 ( 2                   | 7 / 2          | 0.04          |                       |
| Span # 1                                  |                      | 1     | 9.167            | -2.62                   | 7.62           | 0.34          |                       |
| Span # 2                                  |                      | 2     | 9.167            | -2.98                   | 7.62           | 0.39          |                       |
| Span # 3                                  |                      | 3     | 9.750            | -3.07                   | 7.62           | 0.40          |                       |
| <b>Overall Maximum Deflections</b>        |                      |       |                  |                         |                |               |                       |
| Load Combination Spa                      |                      | Locat | ion in Span (ft) | Load Combination        |                | "+" Defl (in) | Location in Span (ft) |
|                                           | 0.0208               |       | 4.217            | +D+L+H, LL Comb Run (L* | L)             | -0.0007       | 9.350                 |
|                                           |                      |       | 4 5 0 4          | DILLL Campb Dum /1*     | 1 )            | 0.0054        | 5.684                 |
| +D+L+H, LL Comb Run (*L*)                 | 2 0.0055<br>3 0.0263 |       | 4.584<br>5.265   | +D+L+H, LL Comb Run (L* | L)             | -0.0054       | 5.684                 |



48"


w x 6" h

Lic. # : KW-06005835 DESCRIPTION: Basement Slab-on-Grade (4-Span)

# **CODE REFERENCES**

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16

# **Material Properties**



48

w x 6" h

## **Cross Section & Reinforcing Details**

w x 6" h

48

Rectangular Section, Width = 48.0 in, Height = 6.0 in Span #1 Reinforcing.... 4-#4 at 3.0 in from Bottom, from 0.0 to 9.750 ft in this span Span #2 Reinforcing.... 4-#4 at 3.0 in from Bottom, from 0.0 to 9.167 ft in this span Span #3 Reinforcing.... 4-#4 at 3.0 in from Bottom, from 0.0 to 9.167 ft in this span Span #4 Reinforcing.... 4-#4 at 3.0 in from Bottom, from 0.0 to 9.750 ft in this span

Beam self weight calculated and added to loads

Loads on all spans... D = 0.020, L = 0.040

Uniform Load on ALL spans : D = 0.020, L = 0.040 ksf, Tributary Width = 4.0 ft

48'

w x 6" h

# **DESIGN SUMMARY**

| DESIGN SUMMARY                                                                                       |                                                         |                                                                                                                                                            | Design OK                                                                                                                     |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Maximum Bending Stress Ratio =<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable | 0.722:1<br>Typical Section<br>-7.186 k-ft<br>9.953 k-ft | Maximum Deflection<br>Max Downward Transient Deflection<br>Max Upward Transient Deflection<br>Max Downward Total Deflection<br>Max Upward Total Deflection | 0.010 in Ratio = 12260 >=360<br>-0.005 in Ratio = 22712 >=360<br>0.025 in Ratio = 4662 >=180<br>-0.003 in Ratio = 33645 >=180 |
| Location of maximum on span                                                                          | 0.000 ft                                                | Max opward Total Denotion                                                                                                                                  | 0.000 m radio = 00040 >= 100.                                                                                                 |
| Span # where maximum occurs                                                                          | Span # 4                                                |                                                                                                                                                            |                                                                                                                               |

| Vertical Reactions         |           |           | Support n | Support notation : Far left is #1 |           |  |  |  |  |
|----------------------------|-----------|-----------|-----------|-----------------------------------|-----------|--|--|--|--|
| Load Combination           | Support 1 | Support 2 | Support 3 | Support 4                         | Support 5 |  |  |  |  |
| Overall MAXimum            | 2.120     | 5.914     | 4.727     | 5.914                             | 2.120     |  |  |  |  |
| Overall MINimum            | -0.007    | 0.045     | -0.182    | 0.045                             | -0.007    |  |  |  |  |
| +D+H                       | 1.429     | 4.047     | 3.045     | 4.047                             | 1.429     |  |  |  |  |
| +D+L+H, LL Comb Run (***L) | 1.422     | 4.092     | 2.863     | 5.079                             | 2.102     |  |  |  |  |
| +D+L+H, LL Comb Run (**L*) | 1.447     | 3.931     | 3.886     | 4.837                             | 1.364     |  |  |  |  |



Lic. # : KW-06005835

# DESCRIPTION: Basement Slab-on-Grade (4-Span)

| Support notation : Far left is #1Support 1Support 2Support 3Support 4Support 5D+L+H, LL Comb Run (**LL)1.4403.9763.7045.8692.036D+L+H, LL Comb Run (*L**)1.3644.8373.8863.9311.447D+L+H, LL Comb Run (*L*)1.3574.8823.7044.9632.120D+L+H, LL Comb Run (*LL*)1.3754.7654.5455.7532.054D+L+H, LL Comb Run (*LL)1.3754.7654.5455.7532.054D+L+H, LL Comb Run (*LL)2.0955.1242.6805.1242.095D+L+H, LL Comb Run (L***)2.1025.0792.8634.0921.422D+L+H, LL Comb Run (L**)2.0955.1242.6805.1242.095D+L+H, LL Comb Run (L**)2.1135.0083.5215.9142.030D+L+H, LL Comb Run (L**)2.0365.8693.7043.9761.440D+L+H, LL Comb Run (L**)2.0545.753                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D+L+H, LL Comb Run (*L**)1.3644.8373.8863.9311.447D+L+H, LL Comb Run (*L*)1.3574.8823.7044.9632.120D+L+H, LL Comb Run (*LL)1.3824.7214.7274.7211.382D+L+H, LL Comb Run (*LL)1.3754.7654.5455.7532.054D+L+H, LL Comb Run (***)2.1025.0792.8634.0921.422D+L+H, LL Comb Run (L***)2.0955.1242.6805.1242.095D+L+H, LL Comb Run (L*L*)2.1135.0083.7044.8821.357D+L+H, LL Comb Run (L*L)2.1135.0083.5215.9142.030D+L+H, LL Comb Run (L*L*)2.0365.8693.7043.9761.440D+L+H, LL Comb Run (LL**)2.0305.9143.5215.0082.113D+L+H, LL Comb Run (LL*)2.0485.7974.3625.7972.048D+L+H, LL Comb Run (LLL)2.0485.7974.3625.7972.048D+L+H, LL Comb Run (**L)1.4294.0473.0454.0471.429D+L+H, LL Comb Run (**L*)1.4294.0473.0454.0471.429D+L+H, LL Comb Run (**L*)1.4294.0473.0454.0471.429D+L+H, LL Comb Run (**L*)1.4294.0473.0454.0471.429D+L+H, LL Comb Run (**L*)1.4294.0473.0454.0471.429D+L+H, LL Comb Run (**L*)1.4294.0473.0454.0471.429D+Lr                                                                                                                                                                                                                                                                  |
| D+L+H, LL Comb Run (*L*L)1.3574.8823.7044.9632.120D+L+H, LL Comb Run (*LL*)1.3824.7214.7274.7211.382D+L+H, LL Comb Run (*LL)1.3754.7654.5455.7532.054D+L+H, LL Comb Run (L***)2.1025.0792.8634.0921.422D+L+H, LL Comb Run (L*L*)2.0955.1242.6805.1242.095D+L+H, LL Comb Run (L*L*)2.1135.0083.7044.8821.357D+L+H, LL Comb Run (L*LL)2.1135.0083.5215.9142.030D+L+H, LL Comb Run (LL**)2.0365.8693.7043.9761.440D+L+H, LL Comb Run (LL**)2.0545.7534.5454.7651.375D+L+H, LL Comb Run (LLL*)2.0545.7534.5454.7651.375D+L+H, LL Comb Run (LLL)2.0485.7974.3625.7972.048D+L+H, LL Comb Run (*LL)1.4294.0473.0454.0471.429D+L+H, LL Comb Run (**L)1.4294.0473.0454.0471.429D+L+H, LL Comb Run (**L)1.4294.0473.0454.0471.429D+Lr+H, LL Comb Run (**L)1.4294.0473.0454.0471.429D+Lr+H, LL Comb Run (**L)1.4294.0473.0454.0471.429D+Lr+H, LL Comb Run (*L*)1.4294.0473.0454.0471.429D+Lr+H, LL Comb Run (*L*)1.4294.0473.0454.0471.429D                                                                                                                                                                                                                                                                  |
| D+L+H, LL Comb Run (*LL*)1.3824.7214.7274.7211.382D+L+H, LL Comb Run (*LL)1.3754.7654.5455.7532.054D+L+H, LL Comb Run (L***)2.1025.0792.8634.0921.422D+L+H, LL Comb Run (L*L*)2.0955.1242.6805.1242.095D+L+H, LL Comb Run (L*L)2.1135.0083.7044.8821.357D+L+H, LL Comb Run (L*L)2.1135.0083.5215.9142.030D+L+H, LL Comb Run (LL**)2.0365.8693.7043.9761.440D+L+H, LL Comb Run (LL**)2.0305.9143.5215.0082.113D+L+H, LL Comb Run (LL*1)2.0545.7534.5454.7651.375D+L+H, LL Comb Run (LLL)2.0485.7974.3625.7972.048D+L+H, LL Comb Run (**L)1.4294.0473.0454.0471.429D+L+H, LL Comb Run (**L)1.4294.0473.0454.0471.429D+L+H, LL Comb Run (**L)1.4294.0473.0454.0471.429D+Lr+H, LL Comb Run (**L)1.4294.0473.0454.0471.429D+Lr+H, LL Comb Run (*L**)1.4294.0473.0454.0471.429D+Lr+H, LL Comb Run (*LL)1.4294.0473.0454.0471.429D+Lr+H, LL Comb Run (*LL)1.4294.0473.0454.0471.429D+Lr+H, LL Comb Run (*L*1)1.4294.0473.0454.0471.429D                                                                                                                                                                                                                                                                  |
| D+L+H, LL Comb Run (*LLL)1.3754.7654.5455.7532.054D+L+H, LL Comb Run (L***)2.1025.0792.8634.0921.422D+L+H, LL Comb Run (L**L)2.0955.1242.6805.1242.095D+L+H, LL Comb Run (L*L)2.1204.9633.7044.8821.357D+L+H, LL Comb Run (L*L)2.1135.0083.5215.9142.030D+L+H, LL Comb Run (LL**)2.0365.8693.7043.9761.440D+L+H, LL Comb Run (LL*)2.0305.9143.5215.0082.113D+L+H, LL Comb Run (LL*)2.0545.7534.5454.7651.375D+L+H, LL Comb Run (LLL*)2.0485.7974.3625.7972.048D+L+H, LL Comb Run (**L)1.4294.0473.0454.0471.429D+Lr+H, LL Comb Run (*L*)1.4294.0473.0454.0471.429D+Lr+H, LL Comb Run (*L)1.4294.0473.0454.0471.429D+Lr+H, LL Comb Run (*L*)1.4294.0473.0454.0471.429D+Lr+H, LL Comb Run (*L*)1.4294.0473.0454.0471.429D+                                                                                                                                                                                                                                                                  |
| D+L+H, LL Comb Run (L***)2.102 $5.079$ $2.863$ $4.092$ $1.422$ D+L+H, LL Comb Run (L**L) $2.095$ $5.124$ $2.680$ $5.124$ $2.095$ D+L+H, LL Comb Run (L*L) $2.120$ $4.963$ $3.704$ $4.882$ $1.357$ D+L+H, LL Comb Run (L*L) $2.113$ $5.008$ $3.521$ $5.914$ $2.030$ D+L+H, LL Comb Run (LL**) $2.036$ $5.869$ $3.704$ $3.976$ $1.440$ D+L+H, LL Comb Run (LL*) $2.030$ $5.914$ $3.521$ $5.008$ $2.113$ D+L+H, LL Comb Run (LLL*) $2.054$ $5.753$ $4.545$ $4.765$ $1.375$ D+L+H, LL Comb Run (LLL) $2.048$ $5.797$ $4.362$ $5.797$ $2.048$ D+L+H, LL Comb Run (**L) $1.429$ $4.047$ $3.045$ $4.047$ $1.429$ D+Lr+H, LL Comb Run (**L) $1.429$ $4.047$ $3.045$ $4.047$ $1.429$ D+Lr+H, LL Comb Run (**L) $1.429$ $4.047$ $3.045$ $4.047$ $1.429$ D+Lr+H, LL Comb Run (**L) $1.429$ $4.047$ $3.045$ $4.047$ $1.429$ D+Lr+H, LL Comb Run (*L) $1.429$ $4.047$ $3.045$ $4.047$ $1.429$ D+Lr+H, LL Comb Run (*L) $1.429$ $4.047$ $3.045$ $4.047$ $1.429$ D+Lr+H, LL Comb Run (*L) $1.429$ $4.047$ $3.045$ $4.047$ $1.429$ D+Lr+H, LL Comb Run (*L) $1.429$ $4.047$ $3.045$ $4.047$ $1.429$ D+Lr+H, LL Comb Run (*L) $1.429$ $4.047$ $3.045$                                                              |
| D+L+H, LL Comb Run (L**L)2.0955.1242.6805.1242.095D+L+H, LL Comb Run (L*L*)2.1204.9633.7044.8821.357D+L+H, LL Comb Run (L*L)2.1135.0083.5215.9142.030D+L+H, LL Comb Run (LL**)2.0365.8693.7043.9761.440D+L+H, LL Comb Run (LL*)2.0305.9143.5215.0082.113D+L+H, LL Comb Run (LL*)2.0545.7534.5454.7651.375D+L+H, LL Comb Run (LLL*)2.0485.7974.3625.7972.048D+L+H, LL Comb Run (**L)1.4294.0473.0454.0471.429D+Lr+H, LL Comb Run (*LL)1.4294.0473.0454.0471.429D+Lr+H, LL Comb Run (*LL)1.4294.0473.0454.0471.429D+Lr+H, LL Comb Run (*L*)1.4294.0473.0454.0471.429D+Lr+H, LL Comb Run (*L*)1.4294.0473.0454.0471.429D+Lr+H, LL Comb Run (*L*)1.4294.0473.0454.0471.429D+Lr+H, LL Comb Run (*L*)1.4294.0473.0454.0471.429                                                                                                                                                                                                                                                                  |
| D+L+H, LL Comb Run (L*L*)       2.120       4.963       3.704       4.882       1.357         D+L+H, LL Comb Run (L*L)       2.113       5.008       3.521       5.914       2.030         D+L+H, LL Comb Run (LL**)       2.036       5.869       3.704       3.976       1.440         D+L+H, LL Comb Run (LL*L)       2.030       5.914       3.521       5.008       2.113         D+L+H, LL Comb Run (LL*L)       2.030       5.914       3.521       5.008       2.113         D+L+H, LL Comb Run (LLL*)       2.054       5.753       4.545       4.765       1.375         D+L+H, LL Comb Run (LLL)       2.048       5.797       4.362       5.797       2.048         D+L+H, LL Comb Run (**L)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (**L)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (**L)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (**L)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (*L**)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (*L*L)  |
| D+L+H, LL Comb Run (L*L)       2.113       5.008       3.521       5.914       2.030         D+L+H, LL Comb Run (LL**)       2.036       5.869       3.704       3.976       1.440         D+L+H, LL Comb Run (LL*L)       2.030       5.914       3.521       5.008       2.113         D+L+H, LL Comb Run (LL*L)       2.030       5.914       3.521       5.008       2.113         D+L+H, LL Comb Run (LL*L)       2.054       5.753       4.545       4.765       1.375         D+L+H, LL Comb Run (LLL)       2.048       5.797       4.362       5.797       2.048         D+Lr+H, LL Comb Run (**L)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (**L)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (**L)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (**L)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (**L)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (*L*L)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (*L*L) |
| D+L+H, LL Comb Run (LL**)       2.036       5.869       3.704       3.976       1.440         D+L+H, LL Comb Run (LL*L)       2.030       5.914       3.521       5.008       2.113         D+L+H, LL Comb Run (LLL*)       2.054       5.753       4.545       4.765       1.375         D+L+H, LL Comb Run (LLL*)       2.048       5.797       4.362       5.797       2.048         D+Lr+H, LL Comb Run (LLL)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (**L)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (**L)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (**LL)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (**LL)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (*L*L)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (*L*L)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (*L*L)       1.429       4.047       3.045       4.047       1.429                              |
| D+L+H, LL Comb Run (LL*L)       2.030       5.914       3.521       5.008       2.113         D+L+H, LL Comb Run (LLL*)       2.054       5.753       4.545       4.765       1.375         D+L+H, LL Comb Run (LLLL)       2.048       5.797       4.362       5.797       2.048         D+Lr+H, LL Comb Run (**LL)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (**L*)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (**LL)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (**LL)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (**LL)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (*LL)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (*L*L)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (*L*L)       1.429       4.047       3.045       4.047       1.429                                                                                                                          |
| D+L+H, LL Comb Run (LLL*)       2.054       5.753       4.545       4.765       1.375         D+L+H, LL Comb Run (LLL)       2.048       5.797       4.362       5.797       2.048         D+Lr+H, LL Comb Run (***L)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (**L)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (**LL)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (**LL)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (**LL)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (*L**)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (*L*L)       1.429       4.047       3.045       4.047       1.429                                                                                                                                                                                                                                                                                                                        |
| D+L+H, LL Comb Run (LLL)       2.048       5.797       4.362       5.797       2.048         D+Lr+H, LL Comb Run (***L)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (***L)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (**L)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (**LL)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (*L**)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (*L**)       1.429       4.047       3.045       4.047       1.429         D+Lr+H, LL Comb Run (*L*L)       1.429       4.047       3.045       4.047       1.429                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D+Lr+H, LL Comb Run (***L)         1.429         4.047         3.045         4.047         1.429           D+Lr+H, LL Comb Run (**L*)         1.429         4.047         3.045         4.047         1.429           D+Lr+H, LL Comb Run (**LL)         1.429         4.047         3.045         4.047         1.429           D+Lr+H, LL Comb Run (**LL)         1.429         4.047         3.045         4.047         1.429           D+Lr+H, LL Comb Run (*L**)         1.429         4.047         3.045         4.047         1.429           D+Lr+H, LL Comb Run (*L*L)         1.429         4.047         3.045         4.047         1.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| D+Lr+H, LL Comb Run (**L*)         1.429         4.047         3.045         4.047         1.429           D+Lr+H, LL Comb Run (**LL)         1.429         4.047         3.045         4.047         1.429           D+Lr+H, LL Comb Run (*L*)         1.429         4.047         3.045         4.047         1.429           D+Lr+H, LL Comb Run (*L*)         1.429         4.047         3.045         4.047         1.429           D+Lr+H, LL Comb Run (*L*L)         1.429         4.047         3.045         4.047         1.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| D+Lr+H, LL Comb Run (**LL)         1.429         4.047         3.045         4.047         1.429           D+Lr+H, LL Comb Run (*L**)         1.429         4.047         3.045         4.047         1.429           D+Lr+H, LL Comb Run (*L*L)         1.429         4.047         3.045         4.047         1.429           D+Lr+H, LL Comb Run (*L*L)         1.429         4.047         3.045         4.047         1.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| D+Lr+H, LL Comb Run (*L**)         1.429         4.047         3.045         4.047         1.429           D+Lr+H, LL Comb Run (*L*L)         1.429         4.047         3.045         4.047         1.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| D+Lr+H, LL Comb Run (*L*L) 1.429 4.047 3.045 4.047 1.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Dulry HIL Comb Dun (*11*) 1 400 4 047 2 045 4 047 1 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| D+Lr+H, LL Comb Run (*LL*) 1.429 4.047 3.045 4.047 1.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D+Lr+H, LL Comb Run (*LLL) 1.429 4.047 3.045 4.047 1.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D+Lr+H, LL Comb Run (L***) 1.429 4.047 3.045 4.047 1.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D+Lr+H, LL Comb Run (L**L) 1.429 4.047 3.045 4.047 1.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D+Lr+H, LL Comb Run (L*L*) 1.429 4.047 3.045 4.047 1.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D+Lr+H, LL Comb Run (L*LL) 1.429 4.047 3.045 4.047 1.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D+Lr+H, LL Comb Run (LL**) 1.429 4.047 3.045 4.047 1.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D+Lr+H, LL Comb Run (LL*L) 1.429 4.047 3.045 4.047 1.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D+Lr+H, LL Comb Run (LLL*) 1.429 4.047 3.045 4.047 1.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D+Lr+H, LL Comb Run (LLLL) 1.429 4.047 3.045 4.047 1.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D+S+H 1.429 4.047 3.045 4.047 1.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D+0.750Lr+0.750L+H, LL Comb Run ( 1.424 4.081 2.908 4.821 1.934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750Lr+0.750L+H, LL Comb Run ( 1.443 3.960 3.676 4.639 1.380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750Lr+0.750L+H, LL Comb Run ( 1.438 3.994 3.539 5.414 1.885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750Lr+0.750L+H, LL Comb Run ( 1.380 4.639 3.676 3.960 1.443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750Lr+0.750L+H, LL Comb Run ( 1.375 4.673 3.539 4.734 1.947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750Lr+0.750L+H, LL Comb Run ( 1.394 4.552 4.307 4.552 1.394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750Lr+0.750L+H, LL Comb Run ( 1.389 4.586 4.170 5.326 1.898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750Lr+0.750L+H, LL Comb Run ( 1.934 4.821 2.908 4.081 1.424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750Lr+0.750L+H, LL Comb Run ( 1.929 4.855 2.772 4.855 1.929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750Lr+0.750L+H, LL Comb Run ( 1.947 4.734 3.539 4.673 1.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750Lr+0.750L+H, LL Comb Run ( 1.942 4.768 3.402 5.447 1.879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750Lr+0.750L+H, LL Comb Run ( 1.885 5.414 3.539 3.994 1.438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750Lr+0.750L+H, LL Comb Run ( 1.879 5.447 3.402 4.768 1.942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750Lr+0.750L+H, LL Comb Run ( 1.898 5.326 4.170 4.586 1.389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750Lr+0.750L+H, LL Comb Run ( 1.893 5.360 4.033 5.360 1.893                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750L+0.750S+H, LL Comb Run (* 1.424 4.081 2.908 4.821 1.934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750L+0.750S+H, LL Comb Run (* 1.443 3.960 3.676 4.639 1.380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750L+0.750S+H, LL Comb Run (* 1.448 3.994 3.539 5.414 1.885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750L+0.750S+H, LL Comb Run (* 1.380 4.639 3.676 3.960 1.443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750L+0.750S+H, LL Comb Run (* 1.375 4.673 3.539 4.734 1.947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750E+0.7505+H, LL Comb Run (* 1.375 4.075 5.359 4.754 1.947<br>D+0.750L+0.750S+H, LL Comb Run (* 1.394 4.552 4.307 4.552 1.394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D+0.750L+0.750S+H, LL Comb Run (* 1.394 4.552 4.507 4.552 1.574<br>D+0.750L+0.750S+H, LL Comb Run (* 1.389 4.586 4.170 5.326 1.898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D+0.750L+0.750S+H, LL Comb Run (L 1.934 4.821 2.908 4.081 1.424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750L+0.750S+H, LL Comb Run (L 1.929 4.855 2.772 4.855 1.929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750L+0.750S+H, LL Comb Run (L 1.947 4.734 3.539 4.673 1.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750L+0.750S+H, LL Comb Run (L 1.942 4.768 3.402 5.447 1.879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750L+0.750S+H, LL Comb Run (L 1.885 5.414 3.539 3.994 1.438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D+0.750L+0.750S+H, LL Comb Run (L 1.879 5.447 3.402 4.768 1.942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



Lic. # : KW-06005835

# DESCRIPTION: Basement Slab-on-Grade (4-Span)

| Load Combination                   | Support 1 | Support 2 | Support 3      | Support 4      | Support 5       |
|------------------------------------|-----------|-----------|----------------|----------------|-----------------|
| +D+0.60W+H                         | 1.429     | 4.047     | 3.045          | 4.047          | 1.429           |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 1.429     | 4.047     | 2.908          | 4.047          | 1.429           |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 1.424     | 3.960     | 3.676          | 4.639          | 1.380           |
|                                    |           |           |                |                |                 |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 1.438     | 3.994     | 3.539          | 5.414          | 1.885           |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 1.380     | 4.639     | 3.676          | 3.960          | 1.443           |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 1.375     | 4.673     | 3.539          | 4.734          | 1.947           |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 1.394     | 4.552     | 4.307          | 4.552          | 1.394           |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 1.389     | 4.586     | 4.170          | 5.326          | 1.898           |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 1.934     | 4.821     | 2.908          | 4.081          | 1.424           |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 1.929     | 4.855     | 2.772          | 4.855          | 1.929           |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 1.947     | 4.734     | 3.539          | 4.673          | 1.375           |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 1.942     | 4.768     | 3.402          | 5.447          | 1.879           |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 1.885     | 5.414     | 3.539          | 3.994          | 1.438           |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 1.879     | 5.447     | 3.402          | 4.768          | 1.942           |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 1.898     | 5.326     | 4.170          | 4.586          | 1.389           |
| +D+0.750Lr+0.750L+0.450W+H, LL Com | 1.893     | 5.360     | 4.033          | 5.360          | 1.893           |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 1.424     | 4.081     | 2.908          | 4.821          | 1.934           |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 1.443     | 3.960     | 3.676          | 4.639          | 1.380           |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 1.438     | 3.994     | 3.539          | 5.414          | 1.885           |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 1.380     | 4.639     | 3.676          | 3.960          | 1.443           |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 1.375     | 4.039     | 3.539          | 4.734          | 1.443           |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 1.375     | 4.673     | 3.539<br>4.307 | 4.734          | 1.947           |
|                                    |           |           |                |                |                 |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 1.389     | 4.586     | 4.170          | 5.326          | 1.898           |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 1.934     | 4.821     | 2.908          | 4.081          | 1.424           |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 1.929     | 4.855     | 2.772          | 4.855          | 1.929           |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 1.947     | 4.734     | 3.539          | 4.673          | 1.375           |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 1.942     | 4.768     | 3.402          | 5.447          | 1.879           |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 1.885     | 5.414     | 3.539          | 3.994          | 1.438           |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 1.879     | 5.447     | 3.402          | 4.768          | 1.942           |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 1.898     | 5.326     | 4.170          | 4.586          | 1.389           |
| +D+0.750L+0.750S+0.450W+H, LL Comb | 1.893     | 5.360     | 4.033          | 5.360          | 1.893           |
| +0.60D+0.60W+0.60H                 | 0.858     | 2.428     | 1.827          | 2.428          | 0.858           |
| +D+0.70E+0.60H                     | 1.429     | 4.047     | 3.045          | 4.047          | 1.429           |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 1.424     | 4.081     | 2.908          | 4.821          | 1.934           |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 1.443     | 3.960     | 3.676          | 4.639          | 1.380           |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 1.438     | 3.994     | 3.539          | 5.414          | 1.885           |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 1.380     | 4.639     | 3.676          | 3.960          | 1.443           |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 1.375     | 4.673     | 3.539          | 4.734          | 1.947           |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 1.373     | 4.552     | 4.307          | 4.552          | 1.394           |
|                                    | 1.394     | 4.552     | 4.307          | 4.552<br>5.326 | 1.394           |
| +D+0.750L+0.750S+0.5250E+H, LL Com |           |           |                |                |                 |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 1.934     | 4.821     | 2.908          | 4.081          | 1.424           |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 1.929     | 4.855     | 2.772          | 4.855          | 1.929           |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 1.947     | 4.734     | 3.539          | 4.673          | 1.375           |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 1.942     | 4.768     | 3.402          | 5.447          | 1.879           |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 1.885     | 5.414     | 3.539          | 3.994          | 1.438           |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 1.879     | 5.447     | 3.402          | 4.768          | 1.942           |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 1.898     | 5.326     | 4.170          | 4.586          | 1.389           |
| +D+0.750L+0.750S+0.5250E+H, LL Com | 1.893     | 5.360     | 4.033          | 5.360          | 1.893           |
| +0.60D+0.70E+H                     | 0.858     | 2.428     | 1.827          | 2.428          | 0.858           |
| D Only                             | 1.429     | 4.047     | 3.045          | 4.047          | 1.429           |
| L Only, LL Comb Run (***L)         | -0.007    | 0.045     | -0.182         | 1.032          | 0.673           |
| L Only, LL Comb Run (**L*)         | 0.018     | -0.116    | 0.841          | 0.790          | -0.066          |
| L Only, LL Comb Run (**LL)         | 0.010     | -0.071    | 0.658          | 1.822          | 0.607           |
| L Only, LL Comb Run (*L**)         | -0.066    | 0.790     | 0.841          | -0.116         | 0.007           |
| L Only, LL Comb Run (*L*L)         | -0.000    | 0.790     | 0.658          | 0.916          | 0.018           |
|                                    |           |           |                |                |                 |
| L Only, LL Comb Run (*LL*)         | -0.048    | 0.673     | 1.682          | 0.673          | -0.048          |
| L Only, LL Comb Run (*LLL)         | -0.054    | 0.718     | 1.499          | 1.705          | 0.625           |
| L Only, LL Comb Run (L***)         | 0.673     | 1.032     | -0.182         | 0.045          | -0.007<br>0.666 |
| L Only, LL Comb Run (L**L)         | 0.666     | 1.077     | -0.365         | 1.077          |                 |



DESCRIPTION: Basement Slab-on-Grade (4-Span)

| Vertical Reactions         |           | Support notation : Far left is #1 |           |           |           |  |  |  |  |  |  |
|----------------------------|-----------|-----------------------------------|-----------|-----------|-----------|--|--|--|--|--|--|
| Load Combination           | Support 1 | Support 2                         | Support 3 | Support 4 | Support 5 |  |  |  |  |  |  |
| L Only, LL Comb Run (L*L*) | 0.691     | 0.916                             | 0.658     | 0.834     | -0.072    |  |  |  |  |  |  |
| L Only, LL Comb Run (L*LL) | 0.684     | 0.961                             | 0.476     | 1.866     | 0.600     |  |  |  |  |  |  |
| L Only, LL Comb Run (LL**) | 0.607     | 1.822                             | 0.658     | -0.071    | 0.011     |  |  |  |  |  |  |
| L Only, LL Comb Run (LL*L) | 0.600     | 1.866                             | 0.476     | 0.961     | 0.684     |  |  |  |  |  |  |
| L Only, LL Comb Run (LLL*) | 0.625     | 1.705                             | 1.499     | 0.718     | -0.054    |  |  |  |  |  |  |
| L Only, LL Comb Run (LLLL) | 0.618     | 1.750                             | 1.317     | 1.750     | 0.618     |  |  |  |  |  |  |
| H Only                     |           |                                   |           |           |           |  |  |  |  |  |  |

| Land Combination         Number         (0)         (n)         Actual         Design         (n-0)         (0)         (0)         (n)         (n)<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Detailed Shear Informa            | Span | Distance | 'd'  | Vu    | (k)  | Mu   | d*Vu/Mu | Phi*Vc | Comment      | Phi*Vs        | Phi*Vn | Spacing (i |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------|----------|------|-------|------|------|---------|--------|--------------|---------------|--------|------------|-----|
| 1:200-1401-0505-160H, LComb         1         0.62         3.00         2.39         2.39         1.60         0.37         10.82         Vu - PNVC2         01 Req 9.6.         10.8         0.0         0.0           1:200-1401-0505-160H, LComb         1         1.23         3.00         1.51         Su - PNVC2         01 Req 9.6.         10.5         0.0         0.0         0.0           1:200-1401-0505-160H, LComb         1         2.46         3.00         1.10         1.10         4.22         0.06         10.35         Vu - PNVC2         01 Req 9.6.         10.3         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |      |          |      |       |      |      |         |        |              |               |        |            |     |
| 1 200-1 601 - 0505 1.601 L Comb       1       1.23       3.00       1.96       1.96       2.94       0.17       10.5       Wu < PhiVo2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | •    |          |      |       |      |      |         |        |              |               |        |            |     |
| +1200-1420-05951-160H,LL Comb       1       1.55       1.53       1.53       1.53       1.62       0.10       10.4       Vu < PNV22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |      |          |      |       |      |      |         |        |              |               |        |            |     |
| -1200-1.00L-0.56S+1.60H, LL Comb       1       1.10       1.10       1.10       1.00       1.03       10.35       Vu < Phi/VC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |      |          |      |       |      |      | 0.17    |        |              |               |        | 0.0        |     |
| -1200-140L-050S1-160H, LL Comb       1       3.00       0.06       0.66       5.57       0.03       1.03       1.04 v PhiV/22       til Requip A.       1.03       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0 </td <td></td> <td></td> <td>1.85</td> <td>3.00</td> <td>1.53</td> <td>1.53</td> <td>4.02</td> <td>0.10</td> <td>10.40</td> <td></td> <td>lot Reqd 9.6.</td> <td>10.4</td> <td>0.0</td> <td>0.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |      | 1.85     | 3.00 | 1.53  | 1.53 | 4.02 | 0.10    | 10.40  |              | lot Reqd 9.6. | 10.4   | 0.0        | 0.0 |
| -120D-140L-050S-160H, LL Comb       1       3.69       3.00       0.23       0.23       0.24       5.64       0.01       10.28       Vu < Phi/O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |      | 2.46     | 3.00 | 1.10  | 1.10 | 4.82 | 0.06    | 10.35  | Vu < PhiVc/2 | lot Reqd 9.6. | 10.3   | 0.0        | 0.0 |
| + 1200 + 1601 + 0508 + 1.604 + IL Comb 1 4.31 300 - 0.77 4.69 0.04 10.32 V < Phi/V22 tot Reqd 9.6. 10.3 0.0 0.0 + 1200 + 1601 + 0508 + 1.604 + IL Comb 1 4.33 3.00 - 0.77 7 4.69 0.04 10.32 V < Phi/V22 tot Reqd 9.6. 10.4 0.0 0.0 + 1200 + 1.601 + 0508 + 1.604 + IL Comb 1 6.73 3.00 - 2.67 2.06 0.25 10.48 V < Phi/V22 tot Reqd 9.6. 10.4 0.0 0.0 + 1200 + 1.601 + 0508 + 1.604 + IL Comb 1 6.73 3.00 - 2.67 2.07 2.06 0.25 11.604 + V < Phi/V22 tot Reqd 9.6. 10.5 0.0 0.0 + 1200 + 1.601 + 0508 + 1.604 + IL Comb 1 6.73 3.00 - 2.67 2.07 2.06 0.62 9 11.68 V < Phi/V22 tot Reqd 9.6. 11.6 00 0.0 + 1200 + 1.601 + 0508 + 1.604 + IL Comb 1 8.01 3.00 - 2.93 2.93 1.01 0.72 11.38 V < Phi/V22 tot Reqd 9.6. 11.7 00 0.0 + 1200 + 1.601 + 0508 + 1.604 + IL Comb 1 8.03 3.03 3.36 3.36 2.95 0.28 10.69 V < Phi/V22 tot Reqd 9.6. 11.7 00 0.0 + 1200 + 1.601 + 0508 + 1.604 + IL Comb 1 8.03 3.00 3.379 3.79 5.15 0.18 10.54 V < Phi/V22 tot Reqd 9.6. 10.5 0.0 0.0 + 1200 + 1.601 + 0508 + 1.604 + IL Comb 1 8.63 3.00 3.379 3.79 5.15 0.18 10.54 V < Phi/V22 tot Reqd 9.6. 10.5 0.0 0.0 + 1.200 + 1.601 + 0508 + 1.604 + IL Comb 2 10.3 3.00 3.63 3.63 6.683 0.13 10.46 V < Phi/V22 tot Reqd 9.6. 10.5 0.0 0.0 + 1.200 + 1.601 + 0.508 + 1.604 + IL Comb 2 10.43 3.00 3.22 3.22 3.22 3.10 0.23 10.60 V < Phi/V22 tot Reqd 9.6. 10.5 0.0 0.0 + 1.200 + 1.601 + 0.508 + 1.604 + IL Comb 2 11.08 3.00 2.42 2.22 3.10 0.23 10.60 V < Phi/V22 tot Reqd 9.6. 10.6 0.0 0.0 + 1.200 + 1.601 + 0.508 + 1.604 + IL Comb 2 11.00 3.00 2.62 2.62 3.01 0.31 10.6 11.76 V < Phi/V22 tot Reqd 9.6. 11.8 0.0 0.0 + 1.200 + 1.601 + 0.508 + 1.604 + IL Comb 2 12.14 3.00 1.60 7.79 7.71 1.51 V < Phi/V22 tot Reqd 9.6. 11.8 0.0 0.0 + 1.200 + 1.601 + 0.508 + 1.604 + IL Comb 2 12.74 3.00 1.74 1.41 1.90 0.31 1.00 1.176 V < Phi/V22 tot Reqd 9.6. 11.8 0.0 0.0 + 1.200 + 1.601 + 0.508 + 1.604 + IL Comb 2 13.90 3.00 0.79 7.97 2.11 0.09 1.040 V < Phi/V22 tot Reqd 9.6. 11.8 0.0 0.0 + 1.200 + 1.601 + 0.508 + 1.604 + IL Comb 2 13.90 3.00 0.79 7.97 2.11 0.09 1.040 V < Phi/V22 tot Reqd 9.6. 10.6 0.0 0.0 + 1.200 + 1.601 + 0.50 |                                   |      | 3.08     | 3.00 | 0.66  | 0.66 | 5.37 | 0.03    | 10.31  | Vu < PhiVc/2 | lot Reqd 9.6. | 10.3   | 0.0        | 0.0 |
| +1200-1460+050S+160H, LL Comb       1       433       3.00       -0.07       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77       0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |      | 3.69     | 3.00 | 0.23  | 0.23 | 5.64 | 0.01    | 10.28  | Vu < PhiVc/2 | lot Reqd 9.6. | 10.3   | 0.0        | 0.0 |
| +120D+1.60L+0.50S+1.60H, LL Comb       1       5.54       3.00       -1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20       1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |      | 4.31     | 3.00 | -0.34 | 0.34 | 5.03 | 0.02    | 10.29  | Vu < PhiVc/2 | lot Reqd 9.6. | 10.3   | 0.0        | 0.0 |
| +120D+1.60L-0.50S-1.60H, LL Comb       1       6.16       3.00       -1.64       1.64       3.20       0.13       10.45       Vu < PhiV/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |      | 4.93     | 3.00 | -0.77 | 0.77 | 4.69 | 0.04    | 10.32  | Vu < PhiVc/2 | lot Reqd 9.6. | 10.3   | 0.0        | 0.0 |
| +120D+160L-050S+160H, LL Comb       1       6.77       3.00       -2.07       2.07       2.07       2.06       0.04       Vu PhiV/2       Iol Reqd 9.6       1.0.6       0.0       0.0         +120D+160L-050S+160H, LL Comb       1       7.39       3.00       -2.50       2.50       0.66       0.95       11.64       Vu PhiV/2       Iol Reqd 9.6       1.0.6       0.0       0.0         +120D+160L-050S+160H, LL Comb       1       8.62       3.00       -3.36       3.36       2.95       0.28       10.69       Vu PhiV/2       Iol Reqd 9.6       1.0.7       0.0       0.0         +120D+160L-050S+160H, LL Comb       1       9.24       3.00       -3.27       3.79       5.15       0.18       10.64       Vu PhiV/2       Iol Reqd 9.6       10.5       0.0       0.0         +120D+160L-050S+160H, LL Comb       2       10.43       3.00       3.22       3.22       4.85       0.17       10.51       Vu PhiV/2       Iol Reqd 9.6       10.5       0.0       0.0         +120D+160L-050S+160H, LL Comb       2       12.16       3.00       2.02       2.00       0.31       1.00       11.76       Vu PhiV/2       Iol Reqd 9.6       1.18       0.0       0.0         +120D+160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |      | 5.54     | 3.00 | -1.20 | 1.20 | 4.08 | 0.07    | 10.37  | Vu < PhiVc/2 | lot Reqd 9.6. | 10.4   | 0.0        | 0.0 |
| +120D+1.60L+0.50S+1.60H, LL Comb       1       7.3       3.00       -2.50       2.50       0.66       0.95       11.68       VU < PhiV/C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +1.20D+1.60L+0.50S+1.60H, LL Comb | ) 1  | 6.16     | 3.00 | -1.64 | 1.64 | 3.20 | 0.13    | 10.45  | Vu < PhiVc/2 | lot Reqd 9.6. | 10.5   | 0.0        | 0.0 |
| +120D+1.601, 0.50S+1.60H, IL Comb       1       8.01       3.00       -2.93       2.93       1.01       0.72       11.35       Vu < PhiV/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +1.20D+1.60L+0.50S+1.60H, LL Comb | ) 1  | 6.77     | 3.00 | -2.07 | 2.07 | 2.06 | 0.25    | 10.64  | Vu < PhiVc/2 | lot Reqd 9.6. | 10.6   | 0.0        | 0.0 |
| +1.20D+1.60I+.050S+1.60H, LL Comb       1       8.62       3.00       -3.79       3.79       5.15       0.18       10.69       Vu < Phi/V22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +1.20D+1.60L+0.50S+1.60H, LL Comb | ) 1  | 7.39     | 3.00 | -2.50 | 2.50 | 0.66 | 0.95    | 11.68  | Vu < PhiVc/2 | lot Regd 9.6. | 11.7   | 0.0        | 0.0 |
| +120D+1.601+.050S+1.60H, LL Comb       1       8.62       3.00       -3.36       3.36       2.95       0.28       10.69       Vu < Phi/VC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +1.20D+1.60L+0.50S+1.60H, LL Comb | ) 1  | 8.01     | 3.00 | -2.93 | 2.93 | 1.01 | 0.72    | 11.35  | Vu < PhiVc/2 | lot Regd 9.6. | 11.3   | 0.0        | 0.0 |
| +120D+1.60L+0.50S+1.60H, LC comb       1       9.24       3.00       -3.79       3.79       5.15       0.18       10.54       Vu < Phi/V22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +1.20D+1.60L+0.50S+1.60H, LL Comb | ) 1  |          | 3.00 | -3.36 | 3.36 | 2.95 | 0.28    | 10.69  | Vu < PhiVc/2 | lot Regd 9.6. | 10.7   | 0.0        | 0.0 |
| +1200-11.601-0.50S+1.60H, LL Comb       2       9.85       3.00       3.63       3.63       6.83       0.13       10.46       Vu < PhiV/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +1.20D+1.60L+0.50S+1.60H, LL Comb | ) 1  | 9.24     | 3.00 | -3.79 |      | 5.15 | 0.18    | 10.54  | Vu < PhiVc/2 | lot Regd 9.6. | 10.5   | 0.0        | 0.0 |
| +1200+1.601+0.50S+1.60H, LL Comb       2       10.43       3.00       3.22       3.22       4.85       0.17       10.51       Vu < PhiV/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +1.20D+1.60L+0.50S+1.60H, LL Comb | 2    |          |      |       | 3.63 | 6.83 | 0.13    |        | Vu < PhiVc/2 |               |        | 0.0        | 0.0 |
| +120D+1.60L+0.50S+1.60H, LL Comb       2       11.00       3.00       2.82       2.82       3.10       0.23       10.60       Vu < PhiV/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +1.20D+1.60L+0.50S+1.60H, LL Comb |      |          |      |       |      |      |         |        | Vu < PhiVc/2 |               |        |            |     |
| +120D+1.60L+0.50S+1.60H, LL Comb       2       11.58       3.00       2.41       2.41       1.59       0.38       10.83       Vu < PhiV/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +1.20D+1.60L+0.50S+1.60H, LL Comb |      |          |      |       |      |      |         |        | Vu < PhiVc/2 |               |        |            |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +1.20D+1.60L+0.50S+1.60H, LL Comb |      |          |      |       |      |      |         |        |              |               |        |            |     |
| +1200-1.60L+0.50S+1.60H, LL Comb       2       12.74       3.00       1.60       0.73       0.55       11.08       Vu < PhiV/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +1.20D+1.60L+0.50S+1.60H, LL Comb |      |          |      |       |      |      |         |        |              |               |        |            |     |
| +1.20D+1.60L+0.50S+1.60H, LL Comb       2       13.32       3.00       1.19       1.19       1.54       0.19       10.55       Vu < PhiV/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +1.20D+1.60L+0.50S+1.60H, LL Comb |      |          |      |       |      |      |         |        |              |               |        |            |     |
| +1.20D+1.60L+0.50S+1.60H, LL Comb       2       13.90       3.00       0.79       2.11       0.09       10.40       Vu < PhiVd2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +1.20D+1.60L+0.50S+1.60H, LL Comb |      |          |      |       |      |      |         |        |              |               |        |            |     |
| +1.20D+1.60L+0.50S+1.60H, LL Comb       2       14.48       3.00       0.44       0.44       0.86       0.13       10.45       Vu < PhiVc2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   | 2    |          |      |       |      |      |         |        |              | •             |        |            |     |
| +1.20D+1.60L+0.50S+1.60H, LL Comb       2       15.66       3.00       -0.47       0.47       2.24       0.05       10.34       Vu < PhiVd2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | 2    |          |      |       |      |      |         |        |              | •             |        |            |     |
| +1.20D+1.60L+0.50S+1.60H, LL Comb       2       15.64       3.00       -0.88       0.88       1.85       0.12       10.44       Vu < PhiVc/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 2    |          |      |       |      |      |         |        |              | •             |        |            |     |
| +1.20D+1.60L+0.50S+1.60H, LL Comb       2       16.22       3.00       -1.28       1.22       0.26       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47       10.47 <td< td=""><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 2    |          |      |       |      |      |         |        |              | •             |        |            |     |
| +1.20D+1.60L+0.50S+1.60H, LL Comb       2       16.79       3.00       -1.69       1.69       0.37       1.00       11.76       Vu < PhiVc/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 2    |          |      |       |      |      |         |        |              |               |        |            |     |
| +1.20D+1.60L+0.50S+1.60H, LL Comb       2       17.37       3.00       -2.09       2.09       0.73       0.72       11.34       Vu < PhiVc/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 2    |          |      |       |      |      |         |        |              |               |        |            |     |
| +1.20D+1.60L+0.50S+1.60H, LL Comb       2       17.95       3.00       -2.50       2.50       2.06       0.30       10.72       Vu < PhiVc/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 2    |          |      |       |      |      |         |        |              |               |        |            |     |
| +1.20D+1.60L+0.50S+1.60H, LL Comb       2       18.53       3.00       -2.90       2.90       3.62       0.20       10.56       Vu < PhiVc/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 2    |          |      |       |      |      |         |        |              |               |        |            |     |
| +1.20D+1.60L+0.50S+1.60H, LL Comb       3       19.11       3.00       3.04       3.04       4.19       0.18       10.53       Vu < PhiVc/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | 2    |          |      |       |      |      |         |        |              |               |        |            |     |
| +1.20D+1.60L+0.50S+1.60H, LL Comb       3       19.69       3.00       2.63       2.63       2.55       0.26       10.65       Vu < PhiVc/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | 2    |          |      |       |      |      |         |        |              |               |        |            |     |
| +1.20D+1.60L+0.50S+1.60H, LL Comb       3       20.27       3.00       2.23       2.23       1.15       0.49       10.99       Vu < PhiVc/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | 5    |          |      |       |      |      |         |        |              |               |        |            |     |
| +1.20D+1.60L+0.50S+1.60H, LL Comb       3       20.85       3.00       1.82       1.82       0.03       1.00       11.76       Vu < PhiVc/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | 5    |          |      |       |      |      |         |        |              | -             |        |            |     |
| +1.20D+1.60L+0.50S+1.60H, LL Comb       3       21.43       3.00       1.42       1.42       0.96       0.37       10.81       Vu < PhiVc/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | 5    |          |      |       |      |      |         |        |              |               |        |            |     |
| +1.20D+1.60L+0.50S+1.60H, LL Comb       3       22.00       3.00       1.01       1.01       1.67       0.15       10.49       Vu < PhiVc/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | 5    |          |      |       |      |      |         |        |              |               |        |            |     |
| +1.20D+1.60L+0.50S+1.60H, LL Comb       3       22.58       3.00       0.61       0.61       2.13       0.07       10.37       Vu < PhiVc/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   | 5    |          |      |       |      |      |         |        |              |               |        |            |     |
| +1.20D+1.60L+0.50S+1.60H, LL Comb       3       23.16       3.00       -0.35       0.35       0.93       0.09       10.40       Vu < PhiVc/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 0    |          |      |       |      |      |         |        |              |               |        |            |     |
| +1.20D+1.60L+0.50S+1.60H, LL Comb       3       23.74       3.00       -0.65       0.65       2.25       0.07       10.37       Vu < PhiVc/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | -    |          |      |       |      |      |         |        |              |               |        |            |     |
| +1.20D+1.60L+0.50S+1.60H, LL Comb       3       24.32       3.00       -1.06       1.06       1.76       0.15       10.49       Vu < PhiVc/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 0    |          |      |       |      |      |         |        |              |               |        |            |     |
| +1.20D+1.60L+0.50S+1.60H, LL Comb 3 24.90 3.00 -1.46 1.46 1.03 0.36 10.80 Vu < PhiVc/2 lot Reqd 9.6. 10.8 0.0 0.0 +1.20D+1.60L+0.50S+1.60H, LL Comb 3 25.48 3.00 -1.87 1.87 0.06 1.00 11.76 Vu < PhiVc/2 lot Reqd 9.6. 11.8 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   | 5    |          |      |       |      |      |         |        |              |               |        |            | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb 3 25.48 3.00 -1.87 1.87 0.06 1.00 11.76 Vu < PhiVc/2 lot Reqd 9.6. 11.8 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | 5    |          | 3.00 |       |      |      |         |        |              | •             |        | 0.0        | 0.0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   | •    | 24.90    | 3.00 | -1.46 | 1.46 | 1.03 | 0.36    | 10.80  |              |               |        | 0.0        | 0.0 |
| +1.20D+1.60L+0.50S+1.60H, LL Comb 3 26.06 3.00 -2.27 2.27 1.14 0.50 11.01 Vu < PhiVc/2 lot Reqd 9.6. 11.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | 5    | 25.48    | 3.00 | -1.87 | 1.87 | 0.06 | 1.00    | 11.76  |              | lot Reqd 9.6. | 11.8   | 0.0        | 0.0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +1.20D+1.60L+0.50S+1.60H, LL Comb | ) 3  | 26.06    | 3.00 | -2.27 | 2.27 | 1.14 | 0.50    | 11.01  | Vu < PhiVc/2 | lot Reqd 9.6. | 11.0   | 0.0        | 0.0 |



Lic. # : KW-06005835

DESCRIPTION: Basement Slab-on-Grade (4-Span)

### **Detailed Shear Information**

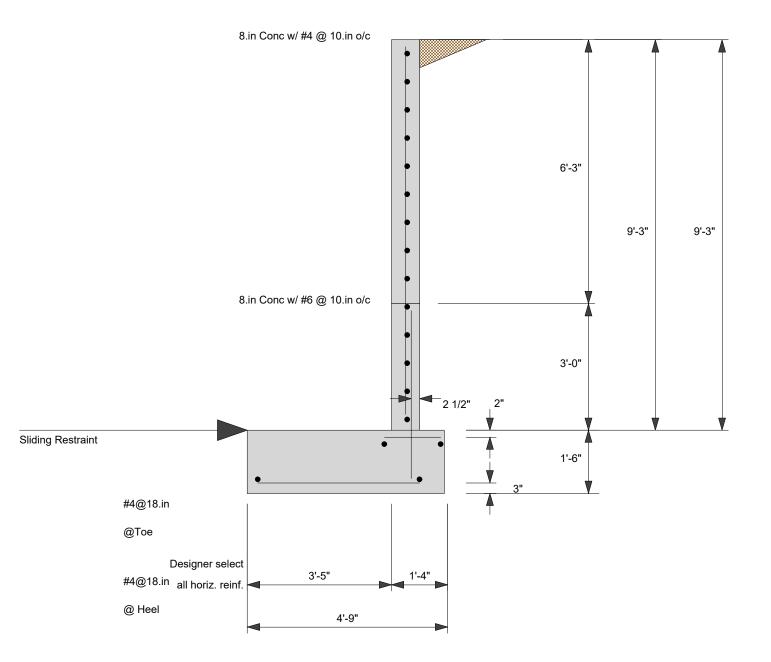
|                                  | Span           | Distance | 'd'  | Vu     | (k)    | Mu     | d*Vu/Mu | Phi*Vc | Comment      | Phi*Vs        | Phi*Vn | Spacing ( |       |
|----------------------------------|----------------|----------|------|--------|--------|--------|---------|--------|--------------|---------------|--------|-----------|-------|
| Load Combination                 | Number         | (ft)     | (in) | Actual | Design | (k-ft) |         | (k)    |              | (k)           | (k)    | Req'd Su  | ggest |
| +1.20D+1.60L+0.50S+1.60H, LL Com | 0 3            | 26.64    | 3.00 | -2.68  | 2.68   | 2.57   | 0.26    | 10.65  | Vu < PhiVc/2 | lot Reqd 9.6. | 10.7   | 0.0       | 0.0   |
| +1.20D+1.60L+0.50S+1.60H, LL Com | o 3            | 27.22    | 3.00 | -3.09  | 3.09   | 4.24   | 0.18    | 10.53  | Vu < PhiVc/2 | lot Reqd 9.6. | 10.5   | 0.0       | 0.0   |
| +1.20D+1.60L+0.50S+1.60H, LL Com | <sup>0</sup> 3 | 27.79    | 3.00 | -3.49  | 3.49   | 6.15   | 0.14    | 10.47  | Vu < PhiVc/2 | lot Reqd 9.6. | 10.5   | 0.0       | 0.0   |
| +1.20D+1.60L+0.50S+1.60H, LL Com | o 4            | 28.39    | 3.00 | 3.93   | 3.93   | 5.94   | 0.17    | 10.51  | Vu < PhiVc/2 | lot Reqd 9.6. | 10.5   | 0.0       | 0.0   |
| +1.20D+1.60L+0.50S+1.60H, LL Com | o 4            | 29.01    | 3.00 | 3.50   | 3.50   | 3.65   | 0.24    | 10.62  | Vu < PhiVc/2 | lot Reqd 9.6. | 10.6   | 0.0       | 0.0   |
| +1.20D+1.60L+0.50S+1.60H, LL Com | <sup>0</sup> 4 | 29.62    | 3.00 | 3.07   | 3.07   | 1.63   | 0.47    | 10.97  | Vu < PhiVc/2 | lot Reqd 9.6. |        | 0.0       | 0.0   |
| +1.20D+1.60L+0.50S+1.60H, LL Com | o 4            | 30.24    | 3.00 | 2.64   | 2.64   | 0.13   | 1.00    | 11.76  | Vu < PhiVc/2 | lot Reqd 9.6. | 11.8   | 0.0       | 0.0   |
| +1.20D+1.60L+0.50S+1.60H, LL Com | o 4            | 30.86    | 3.00 | 2.21   | 2.21   | 1.62   | 0.34    | 10.77  | Vu < PhiVc/2 | lot Reqd 9.6. | 10.8   | 0.0       | 0.0   |
| +1.20D+1.60L+0.50S+1.60H, LL Com | o 4            | 31.47    | 3.00 | 1.78   | 1.78   | 2.85   | 0.16    | 10.49  | Vu < PhiVc/2 | lot Reqd 9.6. | 10.5   | 0.0       | 0.0   |
| +1.20D+1.60L+0.50S+1.60H, LL Com | o 4            | 32.09    | 3.00 | 1.35   | 1.35   | 3.82   | 0.09    | 10.39  | Vu < PhiVc/2 | lot Reqd 9.6. |        | 0.0       | 0.0   |
| +1.20D+1.60L+0.50S+1.60H, LL Com | o 4            | 32.70    | 3.00 | 0.92   | 0.92   | 4.51   | 0.05    | 10.34  | Vu < PhiVc/2 | lot Reqd 9.6. | 10.3   | 0.0       | 0.0   |
| +1.20D+1.60L+0.50S+1.60H, LL Com | o 4            | 33.32    | 3.00 | 0.49   | 0.49   | 4.94   | 0.02    | 10.30  | Vu < PhiVc/2 | lot Reqd 9.6. | 10.3   | 0.0       | 0.0   |
| +1.20D+1.60L+0.50S+1.60H, LL Com | o 4            | 33.93    | 3.00 | 0.13   | 0.13   | 2.86   | 0.01    | 10.28  | Vu < PhiVc/2 | lot Reqd 9.6. | 10.3   | 0.0       | 0.0   |
| +1.20D+1.60L+0.50S+1.60H, LL Com | o 4            | 34.55    | 3.00 | -0.52  | 0.52   | 5.49   | 0.02    | 10.30  | Vu < PhiVc/2 | lot Reqd 9.6. | 10.3   | 0.0       | 0.0   |
| +1.20D+1.60L+0.50S+1.60H, LL Com | o 4            | 35.17    | 3.00 | -0.95  | 0.95   | 5.03   | 0.05    | 10.33  | Vu < PhiVc/2 | lot Reqd 9.6. | 10.3   | 0.0       | 0.0   |
| +1.20D+1.60L+0.50S+1.60H, LL Com | o 4            | 35.78    | 3.00 | -1.38  | 1.38   | 4.31   | 0.08    | 10.38  | Vu < PhiVc/2 | lot Reqd 9.6. | 10.4   | 0.0       | 0.0   |
| +1.20D+1.60L+0.50S+1.60H, LL Com | o 4            | 36.40    | 3.00 | -1.81  | 1.81   | 3.33   | 0.14    | 10.46  | Vu < PhiVc/2 | lot Reqd 9.6. | 10.5   | 0.0       | 0.0   |
| +1.20D+1.60L+0.50S+1.60H, LL Com | o 4            | 37.01    | 3.00 | -2.25  | 2.25   | 2.08   | 0.27    | 10.66  | Vu < PhiVc/2 | lot Reqd 9.6. |        | 0.0       | 0.0   |
| +1.20D+1.60L+0.50S+1.60H, LL Com | o 4            | 37.63    | 3.00 | -2.68  | 2.68   | 0.56   | 1.00    | 11.76  | Vu < PhiVc/2 | lot Reqd 9.6. |        | 0.0       | 0.0   |
|                                  |                |          |      |        |        |        |         |        |              | ··· ···       |        |           |       |

# Maximum Forces & Stresses for Load Combinations

| Load Combination                             | Location (ft) |            | Bending Stress Results (k-ft) |         |              |  |
|----------------------------------------------|---------------|------------|-------------------------------|---------|--------------|--|
| Segment                                      | Span #        | along Beam | Mu : Max                      | Phi*Mnx | Stress Ratio |  |
| AXimum BENDING Envelope                      |               |            |                               |         |              |  |
| Span # 1                                     | 1             | 9.750      | -6.76                         | 9.95    | 0.68         |  |
| Span # 2                                     | 2             | 9.167      | -7.19                         | 9.95    | 0.72         |  |
| Span # 3                                     | 3             | 9.167      | -6.83                         | 9.95    | 0.69         |  |
| Span # 4                                     | 4             | 9.750      | -7.19                         | 9.95    | 0.72         |  |
| 1.40D+1.60H                                  |               |            |                               |         |              |  |
| Span # 1                                     | 1             | 9.750      | -4.80                         | 9.95    | 0.48         |  |
| Span # 2                                     | 2             | 9.167      | -5.11                         | 9.95    | 0.51         |  |
| Span # 3                                     | 3             | 9.167      | -4.86                         | 9.95    | 0.49         |  |
| Span # 4                                     | 4             | 9.750      | -5.11                         | 9.95    | 0.51         |  |
| I.20D+0.50Lr+1.60L+1.60H, LL Comb Run (***L) |               |            |                               |         |              |  |
| Span # 1                                     | 1             | 9.750      | -4.22                         | 9.95    | 0.42         |  |
| Span # 2                                     | 2             | 9.167      | -4.49                         | 9.95    | 0.45         |  |
| Span # 3                                     | 3             | 9.167      | -5.82                         | 9.95    | 0.58         |  |
| Span # 4                                     | 4             | 9.750      | -6.06                         | 9.95    | 0.61         |  |
| 1.20D+0.50Lr+1.60L+1.60H, LL Comb Run (**L*) |               |            | 2.00                          |         |              |  |
| Span # 1                                     | 1             | 9.750      | -3.84                         | 9.95    | 0.39         |  |
| Span # 2                                     | 2             | 9.167      | -4.10                         | 9.95    | 0.41         |  |
| Span # 3                                     | 3             | 9.167      | -5.08                         | 9.95    | 0.51         |  |
| Span # 4                                     | 4             | 9.750      | -5.40                         | 9.95    | 0.54         |  |
| I.20D+0.50Lr+1.60L+1.60H, LL Comb Run (**LL) | •             |            | 0110                          | ,,,,,   | 0101         |  |
| Span # 1                                     | 1             | 9.750      | -3.94                         | 9.95    | 0.40         |  |
| Span # 2                                     | 2             | 9.167      | -4.21                         | 9.95    | 0.42         |  |
| Span # 3                                     | 3             | 9.167      | -6.73                         | 9.95    | 0.68         |  |
| Span # 4                                     | 4             | 9.750      | -7.08                         | 9.95    | 0.71         |  |
| 1.20D+0.50Lr+1.60L+1.60H, LL Comb Run (*L**) |               | 7.700      | 7.00                          | 7.70    | 0.71         |  |
| Span # 1                                     | 1             | 9.750      | -5.13                         | 9.95    | 0.51         |  |
| Span # 2                                     | 2             | 9.167      | -5.40                         | 9.95    | 0.54         |  |
| Span # 3                                     | 3             | 9.167      | -3.90                         | 9.95    | 0.39         |  |
| Span # 4                                     | 4             | 9.750      | -4.10                         | 9.95    | 0.41         |  |
| I.20D+0.50Lr+1.60L+1.60H, LL Comb Run (*L*L) | -1            | 7.700      | н.10                          | 7.75    | 0.71         |  |
| Span # 1                                     | 1             | 9.750      | -5.23                         | 9.95    | 0.53         |  |
| Span # 2                                     | 2             | 9.167      | -5.51                         | 9.95    | 0.55         |  |
| Span # 3                                     | 3             | 9.167      | -5.55                         | 9.95    | 0.56         |  |
| Span # 4                                     | 4             | 9.750      | -5.78                         | 9.95    | 0.58         |  |
| .20D+0.50Lr+1.60L+1.60H, LL Comb Run (*LL*)  | 7             | 7.730      | -3.70                         | 7.75    | 0.00         |  |
| Span # 1                                     | 1             | 9.750      | -4.85                         | 9.95    | 0.49         |  |
| Span # 2                                     | 2             | 9.167      | -4.05                         | 9.95    | 0.51         |  |
| Span # 3                                     | 3             | 9.167      | -4.81                         | 9.95    | 0.48         |  |
| Span # 4                                     | 4             | 9.750      | -4.01                         | 9.95    | 0.40         |  |



# Lic. # : KW-06005835 DESCRIPTION: Basement Slab-on-Grade (4-Span)


| oad Combination                                         | <b>2</b> | Location (ft)  | Bending Stress Results (k-ft) |              |              |  |
|---------------------------------------------------------|----------|----------------|-------------------------------|--------------|--------------|--|
| Segment                                                 | Span #   | along Beam     | Mu : Max                      | Phi*Mnx      | Stress Ratio |  |
| I.20D+0.50Lr+1.60L+1.60H, LL Comb Run (*LLL)            | 1        | 0.750          | 4.05                          | 0.05         | 0.50         |  |
| Span # 1<br>Span # 2                                    | 1<br>2   | 9.750<br>9.167 | -4.95<br>-5.23                | 9.95<br>9.95 | 0.50<br>0.53 |  |
| Span # 3                                                | 2 3      | 9.167          | -5.23<br>-6.47                | 9.95<br>9.95 | 0.65         |  |
| Span # 4                                                | 4        | 9.750          | -6.80                         | 9.95         | 0.68         |  |
| 1.20D+0.50Lr+1.60L+1.60H, LL Comb Run (L***)            | 4        | 9.750          | -0.00                         | 7.75         | 0.00         |  |
| Span # 1                                                | 1        | 9.750          | -5.65                         | 9.95         | 0.57         |  |
| Span # 2                                                | 2        | 9.167          | -6.06                         | 9.95         | 0.61         |  |
| Span # 3                                                | 3        | 9.167          | -4.27                         | 9.95         | 0.43         |  |
| Span # 4                                                | 4        | 9.750          | -4.49                         | 9.95         | 0.45         |  |
| I.20D+0.50Lr+1.60L+1.60H, LL Comb Run (L**L)            |          |                |                               |              |              |  |
| Span # 1                                                | 1        | 9.750          | -5.75                         | 9.95         | 0.58         |  |
| Span # 2                                                | 2        | 9.167          | -6.16                         | 9.95         | 0.62         |  |
| Span # 3                                                | 3        | 9.167          | -5.92                         | 9.95         | 0.59         |  |
| Span # 4                                                | 4        | 9.750          | -6.16                         | 9.95         | 0.62         |  |
| .20D+0.50Lr+1.60L+1.60H, LL Comb Run (L*L*)             |          |                |                               |              |              |  |
| Span # 1                                                | 1        | 9.750          | 5.68                          | 9.95         | 0.57         |  |
| Span # 2                                                | 2        | 9.167          | -5.78                         | 9.95         | 0.58         |  |
| Span # 3                                                | 3        | 9.167          | -5.18                         | 9.95         | 0.52         |  |
| Span # 4                                                | 4        | 9.750          | -5.51                         | 9.95         | 0.55         |  |
| .20D+0.50Lr+1.60L+1.60H, LL Comb Run (L*LL)             | 1        | 0.750          | F / A                         |              |              |  |
| Span # 1                                                | 1        | 9.750          | 5.64                          | 9.95         | 0.57         |  |
| Span # 2<br>Span # 2                                    | 2        | 9.167          | -5.88                         | 9.95         | 0.59         |  |
| Span # 3                                                | 3<br>4   | 9.167          | -6.83                         | 9.95         | 0.69         |  |
| Span # 4<br>.20D+0.50Lr+1.60L+1.60H, LL Comb Run (LL**) | 4        | 9.750          | -7.19                         | 9.95         | 0.72         |  |
| Span # 1                                                | 1        | 9.750          | -6.66                         | 9.95         | 0.67         |  |
| Span # 2                                                | 2        | 9.167          | -7.08                         | 9.95         | 0.71         |  |
| Span # 3                                                | 3        | 9.167          | -4.00                         | 9.95         | 0.40         |  |
| Span # 4                                                | 4        | 9.750          | -4.21                         | 9.95         | 0.40         |  |
| .20D+0.50Lr+1.60L+1.60H, LL Comb Run (LL*L)             | т        | 7.750          | 7.21                          | 7.75         | 0.42         |  |
| Span # 1                                                | 1        | 9.750          | -6.76                         | 9.95         | 0.68         |  |
| Span # 2                                                | 2        | 9.167          | -7.19                         | 9.95         | 0.72         |  |
| Span # 3                                                | 3        | 9.167          | -5.66                         | 9.95         | 0.57         |  |
| Span # 4                                                | 4        | 9.750          | -5.88                         | 9.95         | 0.59         |  |
| .20D+0.50Lr+1.60L+1.60H, LL Comb Run (LLL*)             |          |                |                               |              |              |  |
| Span # 1                                                | 1        | 9.750          | -6.38                         | 9.95         | 0.64         |  |
| Span # 2                                                | 2        | 9.167          | -6.80                         | 9.95         | 0.68         |  |
| Span # 3                                                | 3        | 9.167          | -4.91                         | 9.95         | 0.49         |  |
| Span # 4                                                | 4        | 9.750          | -5.23                         | 9.95         | 0.53         |  |
| .20D+0.50Lr+1.60L+1.60H, LL Comb Run (LLLL)             |          |                |                               |              |              |  |
| Span # 1                                                | 1        | 9.750          | -6.49                         | 9.95         | 0.65         |  |
| Span # 2                                                | 2        | 9.167          | -6.91                         | 9.95         | 0.69         |  |
| Span # 3                                                | 3        | 9.167          | -6.57                         | 9.95         | 0.66         |  |
| Span # 4                                                | 4        | 9.750          | -6.91                         | 9.95         | 0.69         |  |
| I.20D+1.60L+0.50S+1.60H, LL Comb Run (***L)             | -        | 0 750          |                               | 0.05         | A 4A         |  |
| Span # 1                                                | 1        | 9.750          | -4.22                         | 9.95         | 0.42         |  |
| Span # 2                                                | 2        | 9.167          | -4.49                         | 9.95         | 0.45         |  |
| Span # 3<br>Span # 4                                    | 3<br>4   | 9.167          | -5.82                         | 9.95         | 0.58         |  |
| Span # 4<br>.20D+1.60L+0.50S+1.60H, LL Comb Run (**L*)  | 4        | 9.750          | -6.06                         | 9.95         | 0.61         |  |
| Span # 1                                                | 1        | 9.750          | -3.84                         | 9.95         | 0.39         |  |
| Span # 2                                                | 2        | 9.167          | -3.84<br>-4.10                | 9.95<br>9.95 | 0.39         |  |
| Span # 3                                                | 2 3      | 9.167          | -4.10<br>-5.08                | 9.95         | 0.41         |  |
| Span # 4                                                | 4        | 9.750          | -5.40                         | 9.95         | 0.51         |  |
| .20D+1.60L+0.50S+1.60H, LL Comb Run (**LL)              | 4        | 7.130          | -3.40                         | 7.75         | 0.01         |  |
| Span # 1                                                | 1        | 9.750          | -3.94                         | 9.95         | 0.40         |  |
| Span # 2                                                | 2        | 9.167          | -4.21                         | 9.95         | 0.40         |  |
| Span # 3                                                | 3        | 9.167          | -6.73                         | 9.95         | 0.68         |  |
| Span # 4                                                | 4        | 9.750          | -7.08                         | 9.95         | 0.71         |  |
| .20D+1.60L+0.50S+1.60H, LL Comb Run (*L**)              |          |                |                               |              |              |  |
| Span # 1                                                | 1        | 9.750          | -5.13                         | 9.95         | 0.51         |  |
| Span # 2                                                | 2        | 9.167          | -5.40                         | 9.95         | 0.54         |  |
| Span # 3                                                | 3        | 9.167          | -3.90                         | 9.95         | 0.39         |  |
| Span # 4                                                | 4        | 9.750          | -4.10                         | 9.95         | 0.41         |  |
| .20D+1.60L+0.50S+1.60H, LL Comb Run (*L*L)              |          |                |                               |              |              |  |
| Span # 1                                                | 1        | 9.750          | -5.23                         | 9.95         | 0.53         |  |
|                                                         |          |                |                               |              |              |  |
| Span # 2<br>Span # 3                                    | 2<br>3   | 9.167          | -5.51                         | 9.95         | 0.55         |  |



# **Concrete Beam**

# Lic. # : KW-06005835 DESCRIPTION: Basement Slab-on-Grade (4-Span)

| Load Combination                                         |               |                    |        | Location (ft)    |                         | ess Results (k |                   |                     |
|----------------------------------------------------------|---------------|--------------------|--------|------------------|-------------------------|----------------|-------------------|---------------------|
| Segment                                                  |               | Sp                 | pan #  | along Beam       | Mu : Max                | Phi*Mnx        | Stress Rati       | 0                   |
| Span # 4                                                 |               |                    | 4      | 9.750            | -5.78                   | 9.95           | 0.58              |                     |
| 1.20D+1.60L+0.50S+1.60H, LL Comb F                       | Run (*LL*)    |                    |        |                  |                         |                |                   |                     |
| Span # 1                                                 |               |                    | 1      | 9.750            | -4.85                   | 9.95           | 0.49              |                     |
| Span # 2                                                 |               |                    | 2      | 9.167            | -5.12                   | 9.95           | 0.51              |                     |
| Span # 3                                                 |               |                    | 3      | 9.167            | -4.81                   | 9.95           | 0.48              |                     |
| Span # 4                                                 |               |                    | 4      | 9.750            | -5.12                   | 9.95           | 0.51              |                     |
| 1.20D+1.60L+0.50S+1.60H, LL Comb F                       | Run (*LLL)    |                    |        |                  |                         |                |                   |                     |
| Span # 1                                                 |               |                    | 1      | 9.750            | -4.95                   | 9.95           | 0.50              |                     |
| Span # 2                                                 |               |                    | 2      | 9.167            | -5.23                   | 9.95           | 0.53              |                     |
| Span # 3                                                 |               |                    | 3      | 9.167            | -6.47                   | 9.95           | 0.65              |                     |
| Span # 4                                                 |               |                    | 4      | 9.750            | -6.80                   | 9.95           | 0.68              |                     |
| 1.20D+1.60L+0.50S+1.60H, LL Comb F                       | Run (L***)    |                    |        |                  |                         |                |                   |                     |
| Span # 1                                                 |               |                    | 1      | 9.750            | -5.65                   | 9.95           | 0.57              |                     |
| Span # 2                                                 |               |                    | 2      | 9.167            | -6.06                   | 9.95           | 0.61              |                     |
| Span # 3                                                 |               |                    | 3      | 9.167            | -4.27                   | 9.95           | 0.43              |                     |
| Span # 4                                                 |               |                    | 4      | 9.750            | -4.49                   | 9.95           | 0.45              |                     |
| 1.20D+1.60L+0.50S+1.60H, LL Comb F                       | Run (L**L)    |                    |        |                  |                         |                |                   |                     |
| Span # 1                                                 |               |                    | 1      | 9.750            | -5.75                   | 9.95           | 0.58              |                     |
| Span # 2                                                 |               |                    | 2      | 9.167            | -6.16                   | 9.95           | 0.62              |                     |
| Span # 3                                                 |               |                    | 3      | 9.167            | -5.92                   | 9.95           | 0.59              |                     |
| Span # 4                                                 |               |                    | 4      | 9.750            | -6.16                   | 9.95           | 0.62              |                     |
| 1.20D+1.60L+0.50S+1.60H, LL Comb F                       | Run (L*L*)    |                    |        |                  |                         |                |                   |                     |
| Span # 1                                                 | . ,           |                    | 1      | 9.750            | 5.68                    | 9.95           | 0.57              |                     |
| Span # 2                                                 |               |                    | 2      | 9.167            | -5.78                   | 9.95           | 0.58              |                     |
| Span # 3                                                 |               |                    | 3      | 9.167            | -5.18                   | 9.95           | 0.52              |                     |
| Span # 4                                                 |               |                    | 4      | 9.750            | -5.51                   | 9.95           | 0.55              |                     |
| 1.20D+1.60L+0.50S+1.60H, LL Comb F                       | Run (L*LL)    |                    |        |                  |                         |                |                   |                     |
| Span # 1                                                 | ()            |                    | 1      | 9.750            | 5.64                    | 9.95           | 0.57              |                     |
| Span # 2                                                 |               |                    | 2      | 9.167            | -5.88                   | 9.95           | 0.59              |                     |
| Span # 3                                                 |               |                    | 3      | 9.167            | -6.83                   | 9.95           | 0.69              |                     |
| Span # 4                                                 |               |                    | 4      | 9.750            | -7.19                   | 9.95           | 0.72              |                     |
| 1.20D+1.60L+0.50S+1.60H, LL Comb F                       | ?un (I I **)  |                    | •      | 7.700            | ,,                      | 7.70           | 0.72              |                     |
| Span # 1                                                 |               |                    | 1      | 9.750            | -6.66                   | 9.95           | 0.67              |                     |
| Span # 2                                                 |               |                    | 2      | 9.167            | -7.08                   | 9.95           | 0.07              |                     |
| Span # 3                                                 |               |                    | 3      | 9.167            | -4.00                   | 9.95           | 0.40              |                     |
| Span # 4                                                 |               |                    | 4      | 9.750            | -4.21                   | 9.95           | 0.40              |                     |
| 1.20D+1.60L+0.50S+1.60H, LL Comb F                       | 0un /I I *I ) |                    | 4      | 7.750            | -4.21                   | 7.75           | 0.42              |                     |
| Span # 1                                                 |               |                    | 1      | 9.750            | -6.76                   | 9.95           | 0.68              |                     |
| Span # 2                                                 |               |                    | 2      | 9.750            | -0.70                   | 9.95<br>9.95   | 0.08              |                     |
| Span # 3                                                 |               |                    | 2      | 9.167            | -5.66                   | 9.95<br>9.95   | 0.72              |                     |
|                                                          |               |                    | 3<br>4 |                  |                         |                |                   |                     |
| Span # 4                                                 | )un /      *) |                    | 4      | 9.750            | -5.88                   | 9.95           | 0.59              |                     |
| 1.20D+1.60L+0.50S+1.60H, LL Comb F                       | (LLL)         |                    | 1      | 0.750            | ( 20                    | 0.05           | 0.44              |                     |
| Span # 1                                                 |               |                    | 1      | 9.750            | -6.38                   | 9.95           | 0.64              |                     |
| Span # 2                                                 |               |                    | 2      | 9.167            | -6.80                   | 9.95           | 0.68              |                     |
| Span # 3                                                 |               |                    | 3      | 9.167            | -4.91                   | 9.95           | 0.49              |                     |
| Span # 4                                                 |               |                    | 4      | 9.750            | -5.23                   | 9.95           | 0.53              |                     |
| 1.20D+1.60L+0.50S+1.60H, LL Comb F                       | Run (LLLL)    |                    |        | 0 750            | ( 10                    | 0.05           | 0.45              |                     |
| Span # 1                                                 |               |                    | 1      | 9.750            | -6.49                   | 9.95           | 0.65              |                     |
| Span # 2                                                 |               |                    | 2      | 9.167            | -6.91                   | 9.95           | 0.69              |                     |
| Span # 3                                                 |               |                    | 3      | 9.167            | -6.57                   | 9.95           | 0.66              |                     |
| Span # 4                                                 |               |                    | 4      | 9.750            | -6.91                   | 9.95           | 0.69              |                     |
| <b>Overall Maximum Deflee</b>                            |               |                    |        |                  |                         |                |                   |                     |
| oad Combination                                          | Span          | Max. "-" Defl (in) | Locat  | ion in Span (ft) | Load Combination        |                | "+" Defl (in)     | Location in Span (f |
| +D+L+H, LL Comb Run (L*L*)                               | 1             | 0.0251             |        | 4.362            | +D+L+H, LL Comb Run (L* |                | -0.0008           | 9.991               |
| +D+L+H, LL Comb Run (*L*L)                               | 2             | 0.0089             |        | 5.066            | +D+L+H, LL Comb Run (L* | /              | -0.0033           | 1.689               |
|                                                          |               | 0 0000             |        | 1 1 0 1          |                         | *1 \           | 0 0000            | 7 470               |
| +D+L+H, LL Comb Run (L*L*)<br>+D+L+H, LL Comb Run (*L*L) | 3             | 0.0089<br>0.0251   |        | 4.101<br>5.388   | +D+L+H, LL Comb Run (*L | ^L)            | -0.0033<br>0.0000 | 7.478<br>7.478      |





# **Cantilevered Retaining Wall**

Lic. # : KW-06005835

Live Load Earth, H

Wind, W

Seismic, E

1.600

1.600

1.000

# DESCRIPTION: Wall Design Only

Printed: 29 JUL 2022, 8:34AM File: Calcs -Updated.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

| DESCRIPTION: Wall L                      | Jesign         | Uniy               |      |                                  |         |          |                 |                                       |        |                     |
|------------------------------------------|----------------|--------------------|------|----------------------------------|---------|----------|-----------------|---------------------------------------|--------|---------------------|
| Criteria                                 |                |                    |      | Soil Data                        |         |          |                 | Calculations per ACI 3                | 18-14, |                     |
| Retained Height                          | =              | 9.25 ft            |      | Allow Soil Bearing               | =       | 3,000.0  | psf             |                                       |        | CBC 2019, ASCE 7-16 |
| Wall height above soil                   | =              | 0.00 ft            |      | Equivalent Fluid Pressure        |         |          |                 |                                       |        |                     |
| Slope Behind Wall                        | =              | 0.00 : 1           |      | Heel Active Pressure             | =       | 35.0     | osf/ft          |                                       |        |                     |
| Height of Soil over Toe                  | =              | 0.00 in            |      | Toe Active Pressure              | =       | 35.0     |                 |                                       |        |                     |
| Water height over heel                   | =              | 0.0 ft             |      | Passive Pressure                 | =       | 150.0    |                 |                                       |        |                     |
| Vertical component of activ              | ve             |                    |      | Soil Density, Heel               | =       | 120.00   |                 |                                       |        |                     |
| Lateral soil pressure option             |                |                    |      | Soil Density, Toe                | =       | 120.00   |                 |                                       |        |                     |
| NOT USED for Soil P                      |                |                    |      | Friction Coeff btwn Ftg & S      |         | 0.400    | 501             |                                       |        |                     |
| NOT USED for Sliding                     |                |                    |      | Soil height to ignore            |         | 01100    |                 |                                       |        |                     |
| NOT USED for Overtu                      | urning H       | Resistance.        |      | for passive pressure             | =       | 12.00 in | 1               |                                       |        |                     |
| Surcharge Loads                          |                |                    |      | Lateral Load Applied t           | o Stem  |          |                 | Adjacent Footing Loa                  | d      |                     |
| Surcharge Over Heel                      | =              | 0.0 psf            | _    | Lateral Load                     | =       | 72.0 plf | f '             | Adjacent Footing Load                 | =      | 0.0 lbs             |
| Used To Resist Sliding 8                 | & Overt        | urning             |      | Height to Top                    | =       | 9.25 ft  |                 | Footing Width                         | =      | 0.00 ft             |
| Surcharge Over Toe                       | =              | 0.0 psf            |      | Height to Bottom                 | =       | 0.00 ft  |                 | Eccentricity                          | =      | 0.00 in             |
| Used for Sliding & Overt                 | <u> </u>       |                    |      |                                  |         |          |                 | Wall to Ftg CL Dist                   | =      | 0.00 ft             |
| Axial Load Applied to S                  | Stem           |                    |      |                                  |         |          |                 | Footing Type<br>Base Above/Below Soil |        | Line Load           |
| Axial Dead Load                          | =              | 0.2 lbs            |      |                                  |         |          |                 | at Back of Wall                       | =      | 0.0 ft              |
| Axial Live Load                          | =              | 0.0 lbs            |      | Wind on Exposed Stem             | =       | 0.0 ps   | f               | Poisson's Ratio                       | =      | 0.300               |
| Axial Load Eccentricity                  | =              | 0.0 in             |      |                                  |         |          |                 |                                       |        | 0.000               |
| Design Summary                           |                |                    |      | Stem Construction                |         |          | Top Stem        |                                       |        |                     |
| Wall Stability Ratios                    |                |                    |      | Design Height Ab                 | ove Fta | ft =     | Stem C<br>3.0   |                                       |        |                     |
| Overturning                              | =              | 0.82 UN            | STAB |                                  |         | =        | Concre          |                                       |        |                     |
| Sliding                                  | =              | 0.45 OI            | <    | Thickness                        |         | in =     | 8.0             |                                       |        |                     |
| Slab Resists All Sliding                 | g !            |                    |      | Rebar Size                       |         | =        |                 | 4 # 6                                 |        |                     |
| Total Bearing Load                       | =              | 2,734 lbs          |      | Rebar Spacing                    |         | in =     | 10.0            |                                       |        |                     |
| resultant ecc.<br>Resultant Excee        | =<br>ds Eta. \ | 37.42 in<br>Nidth! |      | Rebar Placed at<br>Design Data — |         | =        | Cent            | er Edge                               |        |                     |
| Soil Pressure @ Toe                      | =              | 0 psf              | OK   | fb/FB + fa/Fa                    |         | =        | 0.9             | 06 0.863                              |        |                     |
| Soil Pressure @ Heel                     | =              | 0 psf              |      | Total Force @ Se                 | ection  | lbs =    | 1,543           |                                       |        |                     |
| Allowable                                | =<br>Theor     | 3,000 psf          |      | MomentActual                     | 000011  | ft-l =   | 3,684           |                                       |        |                     |
| Soil Pressure Less<br>ACI Factored @ Toe |                |                    |      | MomentAllowa                     | able    | ft-l =   | 4,065           |                                       |        |                     |
| ACI Factored @ Heel                      | =              | 0 psf<br>0 psf     |      | ShearActual                      |         | psi =    | 37              |                                       |        |                     |
| Footing Shear @ Toe                      | =              | 3.4 psi            |      | ShearAllowabl                    | e       | psi =    | 82              | .2 82.2                               |        |                     |
| Footing Shear @ Heel                     | =              | 5.7 psi            |      | Wall Weight                      |         | psf =    | 100             |                                       |        |                     |
| Allowable                                | =              | 75.0 psi           | UK   | Rebar Depth 'd'                  |         | in =     | 4.0             | 0 5.63                                |        |                     |
| Sliding Calcs Slab Resis                 |                |                    |      | Lap splice if abov               |         | in =     | 17.0            |                                       |        |                     |
| Lateral Sliding Force                    | =              | 2.649.0 lbs        |      | Lap splice if below              |         | in =     | 17.0            |                                       |        |                     |
| less 100% Passive Force                  |                | 93.8 lbs           |      | Hook embed into                  | footing | in =     | 17.0            | 09 10.70                              |        |                     |
| less 100% Friction Force                 | = -            | 1,090.0 lbs        |      | Concrete Data –                  |         |          | 2 000           | 0 0000                                |        |                     |
| Added Force Reg'd                        | =              | 1,461.8 lbs        | NG   | ťc<br>Fy                         |         | psi =    | 3,000<br>60,000 |                                       |        |                     |
| for 1.5 : 1 Stability                    | =              | 2,786.3 lbs        |      | гу                               |         | psi =    | 00,000          | .0 00,000.0                           |        |                     |
| Load Factors                             |                |                    |      |                                  |         |          |                 |                                       |        |                     |
| Dead Load                                |                | 1.200              |      |                                  |         |          |                 |                                       |        |                     |
| Live Load                                |                | 1.600              |      |                                  |         |          |                 |                                       |        |                     |
| Earth H                                  |                | 1 600              |      |                                  |         |          |                 |                                       |        |                     |



# **Cantilevered Retaining Wall**

# DESCRIPTION: Wall Design Only

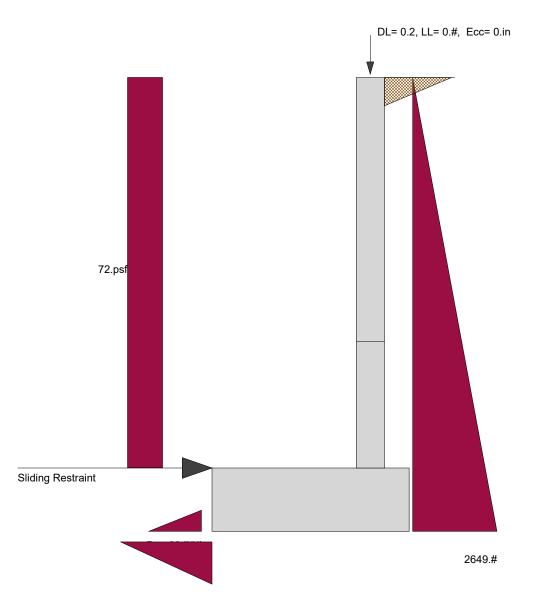
| Footing Dimensions &                                                        | ، Strength  | IS                                                |
|-----------------------------------------------------------------------------|-------------|---------------------------------------------------|
| Toe Width<br>Heel Width<br>Total Footing Width                              | =<br>=      | 3.42 ft<br><u>1.33</u><br>4.75                    |
| Footing Thickness                                                           | =           | 18.00 in                                          |
| Key Width<br>Key Depth<br>Key Distance from Toe                             | =<br>=<br>= | 0.00 in<br>0.00 in<br>0.00 ft                     |
| f'c = 2,500 psi<br>Footing Concrete Densit<br>Min. As %<br>Cover @ Top 2.00 | =           | 60,000 psi<br>150.00 pcf<br>0.0018<br>m.= 3.00 in |

| Footing Design Res     | ults | 5              |             |
|------------------------|------|----------------|-------------|
|                        |      | Toe            | <u>Heel</u> |
| Factored Pressure      | =    | 0              | 0 psf       |
| Mu' : Upward           | =    | 0              | 0 ft-lb     |
| Mu' : Downward         | =    | 1,576          | 356 ft-lb   |
| Mu: Design             | =    | 1,576          | 356 ft-lb   |
| Actual 1-Way Shear     | =    | 3.43           | 5.74 psi    |
| Allow 1-Way Shear      | =    | 75.00          | 75.00 psi   |
| Toe Reinforcing        | =    | # 4 @ 18.00 in |             |
| Heel Reinforcing       | =    | # 4 @ 18.00 in |             |
| Key Reinforcing        | =    | None Spec'd    |             |
| Other Acceptable Sizes | & \$ | Spacings       |             |
| Toe: Not rea'd. Mu     | < 5  | S*Fr           |             |

Project Title: Engineer: Project ID: Project Descr:

Toe: Not req'd, Mu < S \* Fr Heel: Not req'd, Mu < S \* Fr Key: No key defined

# Summary of Overturning & Resisting Forces & Moments


| j i i i i                                      | <u> </u> | J                 |                              |                 |
|------------------------------------------------|----------|-------------------|------------------------------|-----------------|
| Item                                           |          | 0<br>Force<br>Ibs | VERTURNING<br>Distance<br>ft | Moment<br>ft-lb |
| Heel Active Pressure                           | =        | 2,022.3           | 3.58                         | 7,246.7         |
| Surcharge over Heel                            | =        |                   |                              |                 |
| Toe Active Pressure                            | =        | -39.4             | 0.50                         | -19.7           |
| Surcharge Over Toe                             | =        |                   |                              |                 |
| Adjacent Footing Load                          | =        |                   |                              |                 |
| Added Lateral Load                             | =        | 666.0             | 6.13                         | 4,079.3         |
| Load @ Stem Above Soil                         | =        |                   |                              |                 |
|                                                |          |                   |                              |                 |
| Total                                          | =        | 2,649.0           | O.T.M. =                     | 11,306.3        |
| Resisting/Overturning I<br>Vertical Loads used |          | il Pressure       |                              | 0.82<br>Ibs     |

|                          |   | RE<br>Force<br>Ibs | SISTING<br>Distance<br>ft | Moment<br>ft-lb |
|--------------------------|---|--------------------|---------------------------|-----------------|
| Coll Quer Lleal          |   |                    |                           |                 |
| Soil Over Heel           | = | 739.6              | 4.42                      | 3,266.8         |
| Sloped Soil Over Heel    | = |                    |                           |                 |
| Surcharge Over Heel      | = |                    |                           |                 |
| Adjacent Footing Load    | = |                    |                           |                 |
| Axial Dead Load on Stem  | = | 0.2                | 3.75                      | 0.8             |
| Axial Live Load on Stem  | = |                    |                           |                 |
| Soil Over Toe            | = |                    |                           |                 |
| Surcharge Over Toe       | = |                    |                           |                 |
| Stem Weight(s)           | = | 925.0              | 3.75                      | 3,469.1         |
| Earth @ Stem Transitions | = |                    |                           |                 |
| Footing Weight           | = | 1,068.8            | 2.38                      | 2,538.3         |
| Key Weight               | = |                    |                           |                 |
| Vert. Component          | = |                    | _                         |                 |
| Tota                     | = | 2,733.6 lk         | os R.M. =                 | 9,274.9         |

for overturning resistance, but is included for soil pressure calculation.

Printed: 29 JUL 2022, 8:34AM File: Calcs -Updated.ec6

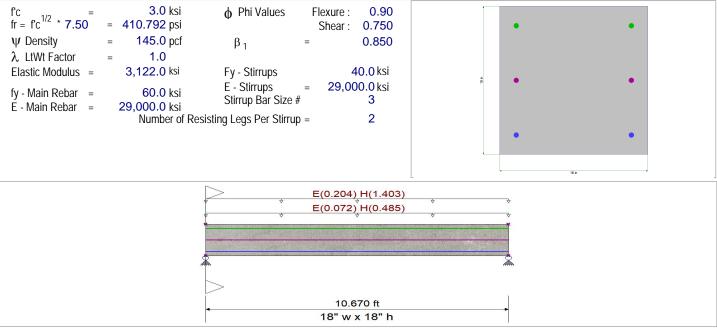
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS



| Cantilever Retaining V | Vall Grade Bean        | n and Pil | e Analysis |                    |        |
|------------------------|------------------------|-----------|------------|--------------------|--------|
| Soil Weight            | 1                      | 20 psf    |            |                    |        |
| Active Pressure        |                        | 40 psf    |            |                    |        |
| Seismic Surcharge      |                        | 8 H       |            |                    |        |
| Pile Spacing           |                        | 36 in     |            |                    |        |
| Wall Height            |                        | 25 ft     | 8" thi     | ick wall           |        |
| Ftg Thick              |                        | L.5 ft    | 0 111      |                    |        |
| Ftg Width              |                        | 57 in     |            |                    |        |
| Fig Width              |                        | 57 111    |            |                    |        |
| Overturning Moment     |                        |           |            |                    |        |
| Soil                   | 5276 lb-ft             |           |            |                    |        |
| Seismic                | 3166 lb-ft             |           |            |                    |        |
| Resisting Moment       |                        | M Ar      | m          | Weight             |        |
| Wall                   | 2775 lb-ft             | 1417.0    | 3.00 ft    | 925                |        |
| Footing                | 1737 lb-ft             |           | 1.63 ft    | 1069               |        |
| Soil                   | 2726 lb-ft             |           | 3.7 ft     | 744                |        |
| DL                     | 897 lb-ft              |           | 3.25 ft    | 276                |        |
| DL                     | 697 ID-IL              |           | 5.25 IL    | 270                |        |
|                        |                        |           |            | 3013               |        |
| OT FOS.                | 1.5 <u>&gt;</u> 1.5 OK |           |            | Grade beam spacing |        |
| EQ OT FOS              | 1.1 <u>≥</u> 1.1 OK    |           |            | 13.27              | ft max |



# 214


Printed: 16 AUG 2022, 6:50AM File: Calcs -Updated.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

# DESCRIPTION: Retaining Wall Grade Beam Span Horizonal (Supports bottom 3' of wall)

## **CODE REFERENCES**

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16

## **Material Properties**



#### **Cross Section & Reinforcing Details**

Rectangular Section, Width = 18.0 in, Height = 18.0 in Span #1 Reinforcing....

2-#5 at 2.375 in from Bottom, from 0.0 to 10.670 ft in this span 2-#5 at 9.0 in from Bottom, from 0.0 to 10.670 ft in this span

2-#5 at 2.375 in from Top, from 0.0 to 10.670 ft in this span

Load for Span Number 1

Uniform Load : E = 0.0720, H = 0.4850 ksf, Tributary Width = 1.0 ft, (Soil Load at Grade Beam) Uniform Load : E = 0.2040, H = 1.403 k/ft, Tributary Width = 1.0 ft, (Soil Load From 3' of Wall)

#### **DESIGN SUMMARY**

| DESIGN SUMMARY                                                                                       |                                                          |                                                                                                                             | Design OK                                                                                   |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Maximum Bending Stress Ratio =<br>Section used for this span<br>Mu : Applied<br>Mn * Phi : Allowable | 0.727:1<br>Typical Section<br>46.917 k-ft<br>64.549 k-ft | Maximum Deflection<br>Max Downward Transient Deflection<br>Max Upward Transient Deflection<br>Max Downward Total Deflection | 0.003 in Ratio = $43458 >= 360.0.000$ in Ratio = $0 < 360.00.022$ in Ratio = $5763 >= 180.$ |
| Location of maximum on span<br>Span # where maximum occurs                                           | 5.345 ft<br>Span # 1                                     | Max Upward Total Deflection                                                                                                 | 0.000 in Ratio = 0<180.0                                                                    |

| Vertical Reactions |           |           | Support notation : Far left is #1 |
|--------------------|-----------|-----------|-----------------------------------|
| Load Combination   | Support 1 | Support 2 |                                   |
| Overall MAXimum    | 11.103    | 11.103    |                                   |
| Overall MINimum    | 1.472     | 1.472     |                                   |
| H Only             | 10.072    | 10.072    |                                   |
| +0.60H             | 6.043     | 6.043     |                                   |
| +0.70E+0.60H       | 7.074     | 7.074     |                                   |
| +0.5250E+H         | 10.846    | 10.846    |                                   |
| +0.70E+H           | 11.103    | 11.103    |                                   |
| E Only             | 1.472     | 1.472     |                                   |



Lic. # : KW-06005835

DESCRIPTION: Retaining Wall Grade Beam Span Horizonal (Supports bottom 3' of wall)

| Load Combination     | Span<br>Number | Distance<br>(ft) | 'd'<br>(in) | Vu<br>Actual | (k)<br>Design | Mu<br>(k-ft) | d*Vu/Mu | Phi*Vc<br>(k) | Comment         | Phi*Vs<br>(k) | Phi*Vn<br>(k) | Spacing (<br>Req'd Su | (in)<br>Iggest |
|----------------------|----------------|------------------|-------------|--------------|---------------|--------------|---------|---------------|-----------------|---------------|---------------|-----------------------|----------------|
| +E+1.60H             | 1              | 0.00             | 15.63       | 17.59        | 17.59         | 0.00         | 1.00    | 24.28         | PhiVc/2 < Vu <= | Min 9.6.3.1   | 39.0          | 7.8                   | 7.0            |
| +E+1.60H             | 1              | 0.12             | 15.63       | 17.20        | 17.20         | 2.03         | 1.00    | 24.28         | PhiVc/2 < Vu <= | Min 9.6.3.1   | 39.0          | 7.8                   | 7.0            |
| +E+1.60H             | 1              | 0.23             | 15.63       | 16.82        | 16.82         | 4.01         | 1.00    | 24.28         | PhiVc/2 < Vu <= | Min 9.6.3.1   | 39.0          | 7.8                   | 7.0            |
| +E+1.60H             | 1              | 0.35             | 15.63       | 16.44        | 16.44         | 5.95         | 1.00    | 24.28         | PhiVc/2 < Vu <= | Min 9.6.3.1   | 39.0          | 7.8                   | 7.0            |
| +E+1.60H             | 1              | 0.47             | 15.63       | 16.05        | 16.05         | 7.85         | 1.00    | 24.28         | PhiVc/2 < Vu <= | Min 9.6.3.1   | 39.0          | 7.8                   | 7.0            |
| +E+1.60H             | 1              | 0.58             | 15.63       | 15.67        | 15.67         | 9.69         | 1.00    | 24.28         | PhiVc/2 < Vu <= | Min 9.6.3.1   | 39.0          | 7.8                   | 7.0            |
| +E+1.60H             | 1              | 0.70             | 15.63       | 15.28        | 15.28         | 11.50        | 1.00    | 24.28         | PhiVc/2 < Vu <= | Min 9.6.3.1   | 39.0          | 7.8                   | 7.0            |
| +E+1.60H             | 1              | 0.82             | 15.63       | 14.90        | 14.90         | 13.26        | 1.00    | 24.28         | PhiVc/2 < Vu <= | Min 9.6.3.1   | 39.0          | 7.8                   | 7.0            |
| +E+1.60H             | 1              | 0.93             | 15.63       | 14.51        | 14.51         | 14.97        | 1.00    | 24.28         | PhiVc/2 < Vu <= | Min 9.6.3.1   | 39.0          | 7.8                   | 7.0            |
| +E+1.60H             | 1              | 1.05             | 15.63       | 14.13        | 14.13         | 16.64        | 1.00    | 24.28         | PhiVc/2 < Vu <= | Min 9.6.3.1   | 39.0          | 7.8                   | 7.0            |
| +E+1.60H             | 1              | 1.17             | 15.63       | 13.74        | 13.74         | 18.27        | 0.98    | 24.23         | PhiVc/2 < Vu <= | Min 9.6.3.1   | 39.0          | 7.8                   | 7.0            |
| +E+1.60H             | 1              | 1.28             | 15.63       | 13.36        | 13.36         | 19.85        | 0.88    | 23.99         | PhiVc/2 < Vu <= | Min 9.6.3.1   | 38.7          | 7.8                   | 7.0            |
| +E+1.60H             | 1              | 1.40             | 15.63       | 12.98        | 12.98         | 21.38        | 0.79    | 23.79         | PhiVc/2 < Vu <= | Min 9.6.3.1   | 38.5          | 7.8                   | 7.0            |
| +E+1.60H             | 1              | 1.52             | 15.63       | 12.59        | 12.59         | 22.88        | 0.72    | 23.62         | PhiVc/2 < Vu <= | Min 9.6.3.1   | 38.4          | 7.8                   | 7.0            |
| +E+1.60H             | 1              | 1.63             | 15.63       | 12.21        | 12.21         | 24.32        | 0.65    | 23.47         | PhiVc/2 < Vu <= | Min 9.6.3.1   | 38.2          | 7.8                   | 7.0            |
| +E+1.60H             | 1              | 1.75             | 15.63       | 11.82        | 11.82         | 25.72        | 0.60    | 23.34         | PhiVc/2 < Vu <= | Min 9.6.3.1   | 38.1          | 7.8                   | 7.0            |
| +E+1.60H             | 1              | 1.87             | 15.63       | 11.44        | 11.44         | 27.08        | 0.55    | 23.23         | Vu < PhiVc/2    | lot Reqd 9.6. | 23.2          | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 1.98             | 15.63       | 11.05        | 11.05         | 28.39        | 0.51    | 23.13         | Vu < PhiVc/2    | lot Reqd 9.6. | 23.1          | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 2.10             | 15.63       | 10.67        | 10.67         | 29.66        | 0.47    | 23.04         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 2.22             | 15.63       | 10.28        | 10.28         | 30.88        | 0.43    | 22.96         | Vu < PhiVc/2    | lot Reqd 9.6. | 23.0          | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 2.33             | 15.63       | 9.90         | 9.90          | 32.05        | 0.40    | 22.89         | Vu < PhiVc/2    | lot Reqd 9.6. | 22.9          | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 2.45             | 15.63       | 9.52         | 9.52          | 33.19        | 0.37    | 22.82         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 2.57             | 15.63       | 9.13         | 9.13          | 34.27        | 0.35    | 22.76         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 2.68             | 15.63       | 8.75         | 8.75          | 35.32        | 0.32    | 22.70         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 2.80             | 15.63       | 8.36         | 8.36          | 36.31        | 0.30    | 22.65         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 2.92             | 15.63       | 7.98         | 7.98          | 37.27        | 0.28    | 22.60         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 3.03             | 15.63       | 7.59         | 7.59          | 38.17        | 0.26    | 22.55         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 3.15             | 15.63       | 7.21         | 7.21          | 39.04        | 0.24    | 22.51         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 3.27             | 15.63       | 6.82         | 6.82          | 39.85        | 0.22    | 22.47         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 3.38             | 15.63       | 6.44         | 6.44          | 40.63        | 0.21    | 22.43         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 3.50             | 15.63       | 6.06         | 6.06          | 41.36        | 0.19    | 22.39         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 3.61             | 15.63       | 5.67         | 5.67          | 42.04        | 0.18    | 22.36         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 3.73             | 15.63       | 5.29         | 5.29          | 42.68        | 0.16    | 22.33         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 3.85             | 15.63       | 4.90         | 4.90          | 43.27        | 0.15    | 22.29         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 3.96             | 15.63       | 4.52         | 4.52          | 43.82        | 0.13    | 22.26         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 4.08             | 15.63       | 4.13         | 4.13          | 44.33        | 0.12    | 22.23         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 4.20             | 15.63       | 3.75         | 3.75          | 44.79        | 0.11    | 22.21         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 4.31             | 15.63       | 3.36         | 3.36          | 45.20        | 0.10    | 22.18         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 4.43             | 15.63       | 2.98         | 2.98          | 45.57        | 0.09    | 22.15         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H<br>+E+1.60H | 1              | 4.55             | 15.63       | 2.60         | 2.60          | 45.90        | 0.07    | 22.12         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H<br>+E+1.60H | 1              | 4.66             | 15.63       | 2.21         | 2.21          | 46.18        | 0.06    | 22.10         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
|                      | 1              | 4.78             | 15.63       | 1.83         | 1.83          | 46.41        | 0.05    | 22.07         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 4.90             | 15.63       | 1.44         | 1.44          | 46.60        | 0.04    | 22.05         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 5.01             | 15.63       | 1.06         | 1.06          | 46.75        | 0.03    | 22.02         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H<br>+E+1.60H | 1              | 5.13             | 15.63       | 0.67         | 0.67          | 46.85        | 0.02    | 22.00         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
|                      | 1              | 5.25             | 15.63       | 0.29         | 0.29          | 46.90        | 0.01    | 21.97         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H<br>+E+1.60H | 1              | 5.36             | 15.63       | -0.10        | 0.10          | 46.92        | 0.00    | 21.96         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H<br>+E+1.60H | 1              | 5.48             | 15.63       | -0.48        | 0.48          | 46.88        | 0.01    | 21.98         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H<br>+E+1.60H | 1              | 5.60             | 15.63       | -0.87        | 0.87          | 46.80        | 0.02    | 22.01         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H<br>+E+1.60H | 1              | 5.71             | 15.63       | -1.25        | 1.25          | 46.68        | 0.03    | 22.03         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
|                      | 1              | 5.83             | 15.63       | -1.63        | 1.63          | 46.51        | 0.05    | 22.06         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 5.95             | 15.63       | -2.02        | 2.02          | 46.30        | 0.06    | 22.08         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 6.06             | 15.63       | -2.40        | 2.40          | 46.04        | 0.07    | 22.11         | Vu < PhiVc/2    | lot Reqd 9.6. |               | 0.0                   | 0.0            |
| +E+1.60H             | 1              | 6.18             | 15.63       | -2.79        | 2.79          | 45.74        | 0.08    | 22.14         | Vu < PhiVc/2    | lot Reqd 9.6. | 22.1          | 0.0                   | 0.0            |



Printed: 16 AUG 2022, 6:50AM File: Calcs -Updated.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 QUANTUM CONSULTING ENGINEERS

Lic. # : KW-06005835

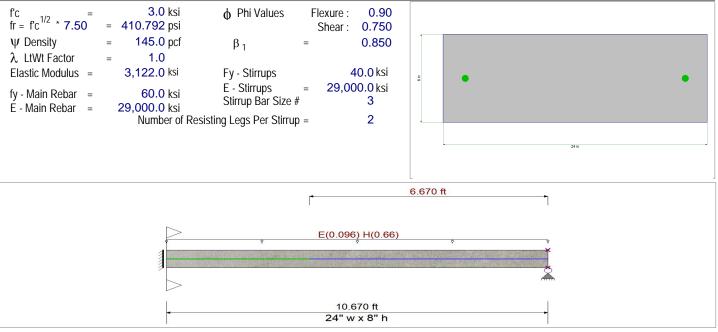
DESCRIPTION: Retaining Wall Grade Beam Span Horizonal (Supports bottom 3' of wall)

### **Detailed Shear Information**

| Load Combination | Span<br>Number | Distance<br>(ft) | 'd'<br>(in)    | Vu<br>Actual   | (k)<br>Design | Mu<br>(k-ft)   | d*Vu/Mu | Phi*Vc<br>(k)  | Comment                      | Phi*Vs<br>(k) | Phi*Vn<br>(k) | Spacing (<br>Req'd Su |             |
|------------------|----------------|------------------|----------------|----------------|---------------|----------------|---------|----------------|------------------------------|---------------|---------------|-----------------------|-------------|
| +E+1.60H         | 1              | 6.30             | 15.63          | -3.17          |               |                | 0.09    |                | Vu < PhiVc/2                 | lot Regd 9.6. | 22.2          | 0.0                   | uyyes<br>0. |
| +E+1.60H         | 1              | 6.41             | 15.63<br>15.63 | -3.17          | 3.17<br>3.56  | 45.39<br>45.00 | 0.09    | 22.16<br>22.19 | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6. | 22.2          | 0.0                   | 0.<br>0.    |
| +E+1.60H         | 1              | 6.53             | 15.63          | -3.94          | 3.94          | 45.00          | 0.10    | 22.19          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Regd 9.6. |               | 0.0                   | 0.          |
| E+1.60H          | 1              | 6.65             | 15.63          | -3.94          | 3.94<br>4.33  | 44.08          | 0.12    | 22.22          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.          |
| E+1.60H          | 1              | 6.76             | 15.63          | -4.33<br>-4.71 | 4.33<br>4.71  | 44.00          | 0.13    | 22.25          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Regd 9.6. | 22.2          | 0.0                   | 0.<br>0.    |
| +E+1.60H         | 1              | 6.88             | 15.63          | -4.71          | 5.09          | 43.55          | 0.14    | 22.20          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.          |
| +E+1.60H         | 1              | 7.00             | 15.63          | -5.48          | 5.48          | 42.90          | 0.15    | 22.31          | Vu < PhiVc/2                 | lot Regd 9.6. | 22.3          | 0.0                   | 0.          |
| +E+1.60H         | 1              | 7.00             | 15.63          | -5.86          | 5.86          | 42.37          | 0.17    | 22.34          | Vu < PhiVc/2                 | lot Regd 9.6. | 22.3          | 0.0                   | 0.          |
| ⊦E+1.60H         | 1              | 7.23             | 15.63          | -6.25          | 6.25          | 41.00          | 0.10    | 22.30          | Vu < PhiVc/2                 | lot Regd 9.6. | 22.4          | 0.0                   | 0.          |
| ⊦E+1.60H         | 1              | 7.35             | 15.63          | -6.63          | 6.63          | 40.25          | 0.20    | 22.41          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.          |
| +E+1.60H         | 1              | 7.46             | 15.63          | -7.02          | 7.02          | 39.45          | 0.21    | 22.49          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.          |
| ⊦E+1.60H         | 1              | 7.58             | 15.63          | -7.40          | 7.40          | 38.61          | 0.25    | 22.53          | Vu < PhiVc/2                 | lot Reqd 9.6. |               | 0.0                   | 0.          |
| ⊦E+1.60H         | 1              | 7.70             | 15.63          | -7.79          | 7.79          | 37.73          | 0.23    | 22.53          | Vu < PhiVc/2                 | lot Reqd 9.6. | 22.6          | 0.0                   | 0.          |
| ⊦E+1.60H         | 1              | 7.81             | 15.63          | -8.17          | 8.17          | 36.80          | 0.29    | 22.62          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.          |
| ⊦E+1.60H         | 1              | 7.93             | 15.63          | -8.55          | 8.55          | 35.82          | 0.31    | 22.67          | Vu < PhiVc/2                 | lot Reqd 9.6. |               | 0.0                   | 0.          |
| ⊦E+1.60H         | 1              | 8.05             | 15.63          | -8.94          | 8.94          | 34.80          | 0.33    | 22.73          | Vu < PhiVc/2                 | lot Regd 9.6. | 22.7          | 0.0                   | 0.          |
| E+1.60H          | 1              | 8.16             | 15.63          | -9.32          | 9.32          | 33.74          | 0.36    | 22.79          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.          |
| E+1.60H          | 1              | 8.28             | 15.63          | -9.71          | 9.71          | 32.63          | 0.30    | 22.85          | Vu < PhiVc/2                 | lot Regd 9.6. | 22.9          | 0.0                   | 0.          |
| ⊦E+1.60H         | 1              | 8.40             | 15.63          | -10.09         | 10.09         | 31.47          | 0.42    | 22.92          | Vu < PhiVc/2                 | lot Regd 9.6. | 22.9          | 0.0                   | 0.          |
| ⊦E+1.60H         | 1              | 8.51             | 15.63          | -10.48         | 10.48         | 30.27          | 0.45    | 23.00          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.          |
| ⊦E+1.60H         | 1              | 8.63             | 15.63          | -10.86         | 10.86         | 29.03          | 0.49    | 23.08          | Vu < PhiVc/2                 | lot Reqd 9.6. |               | 0.0                   | 0.          |
| ⊦E+1.60H         | 1              | 8.75             | 15.63          | -11.25         | 11.25         | 27.74          | 0.53    | 23.18          | Vu < PhiVc/2                 | lot Regd 9.6. |               | 0.0                   | 0.          |
| +E+1.60H         | 1              | 8.86             | 15.63          | -11.63         | 11.63         | 26.41          | 0.57    | 23.28          | Vu < PhiVc/2                 | lot Reqd 9.6. | 23.3          | 0.0                   | 0.          |
| +E+1.60H         | 1              | 8.98             | 15.63          | -12.01         | 12.01         | 25.03          | 0.63    | 23.40          | PhiVc/2 < Vu <=              | Min 9.6.3.1   | 38.1          | 7.8                   | 7.          |
| +E+1.60H         | 1              | 9.10             | 15.63          | -12.40         | 12.40         | 23.60          | 0.68    | 23.54          | PhiVc/2 < Vu <=              | Min 9.6.3.1   | 38.3          | 7.8                   | 7.          |
| +E+1.60H         | 1              | 9.21             | 15.63          | -12.78         | 12.78         | 22.14          | 0.75    | 23.70          | PhiVc/2 < Vu <=              | Min 9.6.3.1   | 38.4          | 7.8                   | 7.          |
| +E+1.60H         | 1              | 9.33             | 15.63          | -13.17         | 13.17         | 20.62          | 0.83    | 23.88          | PhiVc/2 < Vu <=              | Min 9.6.3.1   | 38.6          | 7.8                   | 7.          |
| +E+1.60H         | 1              | 9.45             | 15.63          | -13.55         | 13.55         | 19.06          | 0.93    | 24.10          | PhiVc/2 < Vu <=              | Min 9.6.3.1   | 38.8          | 7.8                   | 7.          |
| +E+1.60H         | 1              | 9.56             | 15.63          | -13.94         | 13.94         | 17.46          | 1.00    | 24.28          | PhiVc/2 < Vu <=              | Min 9.6.3.1   | 39.0          | 7.8                   | 7.          |
| +E+1.60H         | 1              | 9.68             | 15.63          | -14.32         | 14.32         | 15.81          | 1.00    | 24.28          | PhiVc/2 < Vu <=              | Min 9.6.3.1   | 39.0          | 7.8                   | 7.          |
| +E+1.60H         | 1              | 9.80             | 15.63          | -14.71         | 14.71         | 14.12          | 1.00    | 24.28          | PhiVc/2 < Vu <=              | Min 9.6.3.1   | 39.0          | 7.8                   | 7.          |
| +E+1.60H         | 1              | 9.91             | 15.63          | -15.09         | 15.09         | 12.38          | 1.00    | 24.28          | PhiVc/2 < Vu <=              | Min 9.6.3.1   | 39.0          | 7.8                   | 7.          |
| +E+1.60H         | 1              | 10.03            | 15.63          | -15.47         | 15.47         | 10.60          | 1.00    | 24.28          | PhiVc/2 < Vu <=              | Min 9.6.3.1   | 39.0          | 7.8                   | 7.          |
| +E+1.60H         | 1              | 10.15            | 15.63          | -15.86         | 15.86         | 8.78           | 1.00    | 24.28          | PhiVc/2 < Vu <=              | Min 9.6.3.1   | 39.0          | 7.8                   | 7.          |
| +E+1.60H         | 1              | 10.26            | 15.63          | -16.24         | 16.24         | 6.90           | 1.00    | 24.28          | PhiVc/2 < Vu <=              | Min 9.6.3.1   | 39.0          | 7.8                   | 7.          |
| +E+1.60H         | 1              | 10.38            | 15.63          | -16.63         | 16.63         | 4.99           | 1.00    | 24.28          | PhiVc/2 < Vu <=              | Min 9.6.3.1   | 39.0          | 7.8                   | 7.          |
| ⊦E+1.60H         | 1              | 10.50            | 15.63          | -17.01         | 17.01         | 3.03           | 1.00    | 24.28          | PhiVc/2 < Vu <=              | Min 9.6.3.1   | 39.0          | 7.8                   | 7.          |
| +E+1.60H         | 1              | 10.61            | 15.63          | -17.40         | 17.40         | 1.02           | 1.00    | 24.28          | PhiVc/2 < Vu <=              | Min 9.6.3.1   | 39.0          | 7.8                   | 7.          |

### Maximum Forces & Stresses for Load Combinations

| Load Combination           |      |                    |       | Location (ft)    | Bending          |         |               |                       |
|----------------------------|------|--------------------|-------|------------------|------------------|---------|---------------|-----------------------|
| Segment                    |      | S                  | pan # | along Beam       | Mu : Max         | Phi*Mnx | Stress Rati   | 0                     |
| MAXimum BENDING Envelope   |      |                    |       |                  |                  |         |               |                       |
| Span # 1                   |      |                    | 1     | 10.670           | 46.92            | 64.55   | 0.73          |                       |
| +1.60H                     |      |                    |       |                  |                  |         |               |                       |
| Span # 1                   |      |                    | 1     | 10.670           | 42.99            | 64.55   | 0.67          |                       |
| +E+1.60H                   |      |                    |       |                  |                  |         |               |                       |
| Span # 1                   |      |                    | 1     | 10.670           | 46.92            | 64.55   | 0.73          |                       |
| +E+0.90H                   |      |                    |       |                  |                  |         |               |                       |
| Span # 1                   |      |                    | 1     | 10.670           | 28.11            | 64.55   | 0.44          |                       |
| Overall Maximum Deflection | IS   |                    |       |                  |                  |         |               |                       |
| Load Combination S         | Span | Max. "-" Defl (in) | Locat | ion in Span (ft) | Load Combination | Max.    | "+" Defl (in) | Location in Span (ft) |
| +0.70E+H                   | 1    | 0.0222             |       | 5.335            |                  |         | 0.0000        | 0.000                 |




DESCRIPTION: Retaining Wall Span Horizonal (7' Below Grade)

# **CODE REFERENCES**

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : ASCE 7-16

## **Material Properties**



#### **Cross Section & Reinforcing Details**

Rectangular Section, Width = 24.0 in, Height = 8.0 in Span #1 Reinforcing....

2-#5 at 4.0 in from Bottom, from 0.0 to 10.670 ft in this span

2-#5 at 4.0 in from Top, from 0.0 to 4.0 ft in this span

Load for Span Number 1

Uniform Load : E = 0.0480, H = 0.330 ksf, Tributary Width = 2.0 ft, (Soil Load At Base)

| DESIG    | N SUMMARY                                                                                                    |                                                                       |                                                                                                                                                            |                      | Desig                                    | jn OK |
|----------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------|-------|
| Section  | n Bending Stress Ratio =<br>used for this span<br>Mu : Applied<br>Mn * Phi : Allowable<br>of maximum on span | 0.894 : 1<br>Typical Section<br>9.222 k-ft<br>10.312 k-ft<br>6.666 ft | Maximum Deflection<br>Max Downward Transient Deflection<br>Max Upward Transient Deflection<br>Max Downward Total Deflection<br>Max Upward Total Deflection | 0.000 in<br>0.029 in | Ratio =<br>Ratio =<br>Ratio =<br>Ratio = |       |
| Span # \ | where maximum occurs                                                                                         | Span # 1                                                              |                                                                                                                                                            |                      |                                          |       |

| Vertical Reactions           | Support notation : Far left is #1 |          |        |         |        |        |         |        |                 |                |        |           |        |
|------------------------------|-----------------------------------|----------|--------|---------|--------|--------|---------|--------|-----------------|----------------|--------|-----------|--------|
| Load Combination             |                                   | Sup      | port 1 | Support | 2      |        |         |        |                 |                |        |           |        |
| Overall MAXimum              |                                   |          | 4.819  | 2.94    | 0      |        |         |        |                 |                |        |           |        |
| Overall MINimum              |                                   |          | 0.640  | 0.38    | 4      |        |         |        |                 |                |        |           |        |
| H Only                       |                                   |          | 4.397  | 2.64    | 5      |        |         |        |                 |                |        |           |        |
| +0.60H                       |                                   |          | 2.641  | 1.58    | 4      |        |         |        |                 |                |        |           |        |
| +0.70E+0.60H                 |                                   |          | 3.089  | 1.85    | 3      |        |         |        |                 |                |        |           |        |
| +0.5250E+H                   |                                   |          | 4.717  | 2.86    | 3      |        |         |        |                 |                |        |           |        |
| +0.70E+H                     |                                   |          | 4.819  | 2.94    | 0      |        |         |        |                 |                |        |           |        |
| E Only                       |                                   |          | 0.640  | 0.38    | 4      |        |         |        |                 |                |        |           |        |
| <b>Detailed Shear Inform</b> | ation                             |          |        |         |        |        |         |        |                 |                |        |           |        |
|                              | Span                              | Distance | 'd'    | Vu      | (k)    | Mu     | d*Vu/Mu | Phi*Vc | Comment         | Phi*Vs         | Phi*Vn | Spacing ( | (in)   |
| Load Combination             | Number                            | (ft)     | (in)   | Actual  | Design | (k-ft) |         | (k)    |                 | (k)            | (k)    | Req'd Su  | iggest |
| +E+1.60H                     | 1                                 | 0.00     | 4.00   | 7.68    | 7.68   | 16.39  | 0.16    | 7.86   | PhiVc/2 < Vu <= | lt<=10", Not I | 7.9    | 0.0       | 0.0    |
| +E+1.60H                     | 1                                 | 0.12     | 4.00   | 7.55    | 7.55   | 15.51  | 0.16    | 7.87   | PhiVc/2 < Vu <= | lt<=10", Not I | 7.9    | 0.0       | 0.0    |



Lic. # : KW-06005835

DESCRIPTION: Retaining Wall Span Horizonal (7' Below Grade)

| Detailed Shear Inf   |                |                  |             |              |               |              |         |               | -                            |                |               |                       |     |
|----------------------|----------------|------------------|-------------|--------------|---------------|--------------|---------|---------------|------------------------------|----------------|---------------|-----------------------|-----|
| Load Combination     | Span<br>Number | Distance<br>(ft) | 'd'<br>(in) | Vu<br>Actual | (k)<br>Design | Mu<br>(k-ft) | d*Vu/Mu | Phi*Vc<br>(k) | Comment                      | Phi*Vs<br>(k)  | Phi*Vn<br>(k) | Spacing (<br>Req'd Su |     |
| +E+1.60H             | 1              | 0.23             | 4.00        | 7.41         | 7.41          | 14.63        | 0.17    | 7.89          | PhiVc/2 < Vu <=              | lt<=10", Not I |               | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 0.35             | 4.00        | 7.28         | 7.28          | 13.78        | 0.18    | 7.90          | PhiVc/2 < Vu <=              |                |               | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 0.47             | 4.00        | 7.15         | 7.15          | 12.94        | 0.18    | 7.92          | PhiVc/2 < Vu <=              |                |               | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 0.58             | 4.00        | 7.01         | 7.01          | 12.11        | 0.19    | 7.94          | PhiVc/2 < Vu <=              |                |               | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 0.70             | 4.00        | 6.88         | 6.88          | 11.30        | 0.20    | 7.96          | PhiVc/2 < Vu <=              |                |               | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 0.82             | 4.00        | 6.74         | 6.74          | 10.51        | 0.20    | 7.99          | PhiVc/2 < Vu <=              |                |               | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 0.02             | 4.00        | 6.61         | 6.61          | 9.73         | 0.21    | 8.02          | PhiVc/2 < Vu <=              |                |               | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 1.05             | 4.00        | 6.47         | 6.47          | 8.97         | 0.23    | 8.05          | PhiVc/2 < Vu <=              |                |               | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 1.03             | 4.00        | 6.34         | 6.34          | 8.22         | 0.24    | 8.09          | PhiVc/2 < Vu <=              |                |               | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 1.17             | 4.00        | 6.20         | 6.20          | 7.49         | 0.20    | 8.14          | PhiVc/2 < Vu <=              |                |               | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 1.40             | 4.00        | 6.07         | 6.07          | 6.77         | 0.30    | 8.19          | PhiVc/2 < Vu <=              |                |               | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 1.40             | 4.00        | 5.94         | 5.94          | 6.07         | 0.33    | 8.25          | PhiVc/2 < Vu <=              |                |               | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 1.63             | 4.00        | 5.80         | 5.80          | 5.39         | 0.35    | 8.33          | PhiVc/2 < Vu <=              |                |               | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 1.05             | 4.00        | 5.67         | 5.67          | 4.72         | 0.30    | 8.42          | PhiVc/2 < Vu <=              |                |               | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 1.73             | 4.00        | 5.53         | 5.53          | 4.07         | 0.40    | 8.55          | PhiVc/2 < Vu <=              |                |               | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 1.07             | 4.00        | 5.40         |               | 3.43         | 0.43    | 8.71          | PhiVc/2 < Vu <=              |                |               | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 2.10             | 4.00        | 5.26         | 5.40          | 2.81         | 0.52    | 8.95          | PhiVc/2 < Vu <=              |                |               | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 2.10             | 4.00        | 5.13         | 5.20          | 2.01         | 0.03    | 9.30          | PhiVc/2 < Vu <=              | It<=10", Not I |               | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 2.22             | 4.00        | 5.00         | 5.00          | 1.61         | 1.00    | 9.30<br>9.82  | PhiVc/2 $<$ Vu $<=$          | It<=10", Not I |               | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 2.35<br>2.45     | 4.00        | 4.86         | 5.00<br>4.86  | 1.01         | 1.00    | 9.02<br>9.82  | Vu < PhiVc/2                 | lot Regd 9.6.  | 9.0<br>9.8    | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 2.45             |             |              |               |              |         | 9.02<br>9.82  | Vu < PhiVc/2                 | lot Regd 9.6.  |               |                       |     |
| +E+1.60H             | 1              |                  | 4.00        | 4.73         | 4.73<br>4.59  | 0.48         | 1.00    |               | Vu < PhiVc/2<br>Vu < PhiVc/2 |                | 9.8           | 0.0                   | 0.0 |
| +E+1.60H             |                | 2.68             | 4.00        | 4.59         |               | 0.07<br>0.59 | 1.00    | 9.82<br>9.82  | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6.  | 9.8           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 2.80             | 4.00        | 4.46         | 4.46          |              | 1.00    |               | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6.  | 9.8           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 2.92             | 4.00        | 4.32         |               | 1.11         | 1.00    | 9.82          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6.  | 9.8           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 3.03<br>3.15     | 4.00        | 4.19         | 4.19          | 1.60         | 0.87    | 9.52          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6.  | 9.5           | 0.0                   | 0.0 |
| +E+1.60H             |                | 3.15<br>3.27     | 4.00        | 4.06         | 4.06          | 2.08         | 0.65    | 9.00          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6.  | 9.0<br>0.7    | 0.0                   | 0.0 |
| +E+1.60H             | 1              |                  | 4.00        | 3.92         | 3.92          | 2.55         | 0.51    | 8.68          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6.  | 8.7           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 3.38             | 4.00        | 3.79         | 3.79          | 3.00         | 0.42    | 8.47          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6.  | 8.5           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 3.50             | 4.00        | 3.65         | 3.65          | 3.43         | 0.35    | 8.32          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6.  | 8.3           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 3.61             | 4.00        | 3.52         |               | 3.85         | 0.30    | 8.20          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6.  | 8.2           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 3.73             | 4.00        | 3.38         | 3.38          | 4.25         | 0.27    | 8.11          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6.  | 8.1           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 3.85             | 4.00        | 3.25         | 3.25          | 4.64         | 0.23    | 8.04          | Vu < PhiVc/2<br>Vu < PhiVc/2 | lot Reqd 9.6.  | 8.0           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 3.96             | 4.00        | 3.11         | 3.11          | 5.01         | 0.21    | 7.97          |                              | lot Reqd 9.6.  | 8.0           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 4.08             | 4.00        | 2.98         | 2.98          | 5.37         | 0.19    | 7.92          | Vu < PhiVc/2                 | lot Reqd 9.6.  | 7.9           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 4.20             | 4.00        | 2.85         | 2.85          | 5.71         | 0.17    | 7.88          | Vu < PhiVc/2                 | lot Reqd 9.6.  | 7.9           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 4.31             | 4.00        | 2.71         | 2.71          | 6.03         | 0.15    | 7.84          | Vu < PhiVc/2                 | lot Reqd 9.6.  | 7.8           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 4.43             | 4.00        | 2.58         |               | 6.34         | 0.14    | 7.81          | Vu < PhiVc/2                 | lot Reqd 9.6.  |               | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 4.55             | 4.00        | 2.44         | 2.44          | 6.63         | 0.12    | 7.78          | Vu < PhiVc/2                 | lot Reqd 9.6.  | 7.8           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 4.66             | 4.00        | 2.31         | 2.31          | 6.91         | 0.11    | 7.75          | Vu < PhiVc/2                 | lot Reqd 9.6.  | 7.8           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 4.78             | 4.00        | 2.17         | 2.17          | 7.17         | 0.10    | 7.73          | Vu < PhiVc/2                 | lot Reqd 9.6.  | 7.7           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 4.90             | 4.00        | 2.04         | 2.04          | 7.42         | 0.09    | 7.71          | Vu < PhiVc/2                 | lot Reqd 9.6.  | 7.7           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 5.01             | 4.00        | 1.91         | 1.91          | 7.65         | 0.08    | 7.69          | Vu < PhiVc/2                 | lot Reqd 9.6.  | 7.7           | 0.0                   | 0.0 |
|                      | 1              | 5.13             | 4.00        | 1.77         | 1.77          | 7.86         | 0.08    | 7.67          | Vu < PhiVc/2                 | lot Reqd 9.6.  | 7.7           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 5.25             | 4.00        | 1.64         | 1.64          | 8.06         | 0.07    | 7.65          | Vu < PhiVc/2                 | lot Reqd 9.6.  | 7.7           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 5.36             | 4.00        | 1.50         |               | 8.24         | 0.06    | 7.63          | Vu < PhiVc/2                 | lot Reqd 9.6.  | 7.6           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 5.48             | 4.00        | 1.37         | 1.37          | 8.41         | 0.05    | 7.62          | Vu < PhiVc/2                 | lot Reqd 9.6.  | 7.6           | 0.0                   | 0.0 |
| +E+1.60H<br>+E+1.60H | 1              | 5.60             | 4.00        | 1.23         | 1.23          | 8.56         | 0.05    | 7.60          | Vu < PhiVc/2                 | lot Reqd 9.6.  | 7.6           | 0.0                   | 0.0 |
|                      | 1              | 5.71             | 4.00        | 1.10         |               | 8.70         | 0.04    | 7.59          | Vu < PhiVc/2                 | lot Reqd 9.6.  | 7.6           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 5.83             | 4.00        | 0.97         | 0.97          | 8.82         | 0.04    | 7.58          | Vu < PhiVc/2                 | lot Reqd 9.6.  | 7.6           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 5.95             | 4.00        | 0.83         |               | 8.92         | 0.03    | 7.57          | Vu < PhiVc/2                 | lot Reqd 9.6.  | 7.6           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 6.06             | 4.00        | 0.70         | 0.70          | 9.01         | 0.03    | 7.55          | Vu < PhiVc/2                 | lot Reqd 9.6.  | 7.6           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 6.18             | 4.00        | 0.56         | 0.56          | 9.08         | 0.02    | 7.54          | Vu < PhiVc/2                 | lot Reqd 9.6.  | 7.5           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 6.30             | 4.00        | 0.43         |               | 9.14         | 0.02    | 7.53          | Vu < PhiVc/2                 | lot Reqd 9.6.  | 7.5           | 0.0                   | 0.0 |
| +E+1.60H             | 1              | 6.41             | 4.00        | 0.29         | 0.29          | 9.18         | 0.01    | 7.52          | Vu < PhiVc/2                 | lot Reqd 9.6.  | 7.5           | 0.0                   | 0.0 |



Lic. # : KW-06005835

DESCRIPTION: Retaining Wall Span Horizonal (7' Below Grade)

| Load Combination | Span<br>Number | Distance<br>(ft) | 'd'<br>(in) | Vu<br>Actual | (k)<br>Design | Mu<br>(k-ft) | d*Vu/Mu | Phi*Vc<br>(k) | Comment      | Phi*Vs<br>(k) | Phi*Vn<br>(k) | Spacing (<br>Req'd Su |     |
|------------------|----------------|------------------|-------------|--------------|---------------|--------------|---------|---------------|--------------|---------------|---------------|-----------------------|-----|
| +E+1.60H         | 1              | 6.53             | 4.00        | 0.16         | 0.16          | 9.21         | 0.01    | 7.51          | Vu < PhiVc/2 | lot Reqd 9.6. | 7.5           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 6.65             | 4.00        | 0.10         | 0.10          | 9.21         |         | 7.49          | Vu < PhiVc/2 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 6.76             | 4.00        | -0.11        | 0.03          | 9.22         |         | 7.50          | Vu < PhiVc/2 | lot Regd 9.6. | 7.5           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 6.88             | 4.00        | -0.11        | 0.11          | 9.22         |         | 7.51          | Vu < PhiVc/2 | lot Regd 9.6. | 7.5           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 7.00             | 4.00        | -0.24        | 0.24          | 9.20         | 0.01    | 7.52          | Vu < PhiVc/2 | lot Regd 9.6. | 7.5           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 7.00             | 4.00        | -0.50        | 0.50          | 9.10         | 0.01    | 7.54          | Vu < PhiVc/2 | lot Regd 9.6. | 7.5           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 7.23             | 4.00        | -0.65        | 0.65          | 9.04         | 0.02    | 7.55          | Vu < PhiVc/2 | lot Reqd 9.6. | 7.5           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 7.35             | 4.00        | -0.78        | 0.03          | 8.96         | 0.02    | 7.56          | Vu < PhiVc/2 | lot Reqd 9.6. | 7.6           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 7.46             | 4.00        | -0.92        | 0.92          | 8.86         | 0.03    | 7.57          | Vu < PhiVc/2 | lot Regd 9.6. | 7.6           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 7.58             | 4.00        | -0.72        | 1.05          | 8.74         | 0.03    | 7.59          | Vu < PhiVc/2 | lot Regd 9.6. | 7.6           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 7.70             | 4.00        | -1.18        | 1.03          | 8.61         | 0.04    | 7.60          | Vu < PhiVc/2 | lot Reqd 9.6. | 7.6           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 7.81             | 4.00        | -1.32        | 1.10          | 8.47         | 0.05    | 7.61          | Vu < PhiVc/2 | lot Regd 9.6. | 7.6           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 7.93             | 4.00        | -1.45        | 1.45          | 8.31         | 0.06    | 7.63          | Vu < PhiVc/2 | lot Regd 9.6. | 7.6           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 8.05             | 4.00        | -1.59        | 1.59          | 8.13         | 0.07    | 7.64          | Vu < PhiVc/2 | lot Regd 9.6. | 7.6           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 8.16             | 4.00        | -1.72        | 1.72          | 7.94         | 0.07    | 7.66          | Vu < PhiVc/2 | lot Reqd 9.6. | 7.7           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 8.28             | 4.00        | -1.86        | 1.86          | 7.73         | 0.08    | 7.68          | Vu < PhiVc/2 | lot Regd 9.6. | 7.7           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 8.40             | 4.00        | -1.99        | 1.99          | 7.50         |         | 7.70          | Vu < PhiVc/2 | lot Regd 9.6. |               | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 8.51             | 4.00        | -2.12        | 2.12          | 7.26         | 0.10    | 7.72          | Vu < PhiVc/2 | lot Regd 9.6. | 7.7           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 8.63             | 4.00        | -2.26        | 2.26          | 7.01         | 0.11    | 7.74          | Vu < PhiVc/2 | lot Reqd 9.6. | 7.7           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 8.75             | 4.00        | -2.39        | 2.39          | 6.74         | 0.12    | 7.77          | Vu < PhiVc/2 | lot Regd 9.6. | 7.8           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 8.86             | 4.00        | -2.53        | 2.53          | 6.45         | 0.13    | 7.80          | Vu < PhiVc/2 | lot Regd 9.6. | 7.8           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 8.98             | 4.00        | -2.66        | 2.66          | 6.15         | 0.14    | 7.83          | Vu < PhiVc/2 | lot Reqd 9.6. | 7.8           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 9.10             | 4.00        | -2.80        | 2.80          | 5.83         | 0.16    | 7.86          | Vu < PhiVc/2 | lot Reqd 9.6. | 7.9           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 9.21             | 4.00        | -2.93        | 2.93          | 5.50         | 0.18    | 7.91          | Vu < PhiVc/2 | lot Reqd 9.6. | 7.9           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 9.33             | 4.00        | -3.06        | 3.06          | 5.15         | 0.20    | 7.95          | Vu < PhiVc/2 | lot Regd 9.6. | 8.0           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 9.45             | 4.00        | -3.20        | 3.20          | 4.78         | 0.22    | 8.01          | Vu < PhiVc/2 | lot Regd 9.6. | 8.0           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 9.56             | 4.00        | -3.33        | 3.33          | 4.40         | 0.25    | 8.08          | Vu < PhiVc/2 | lot Regd 9.6. | 8.1           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 9.68             | 4.00        | -3.47        | 3.47          | 4.00         | 0.29    | 8.16          | Vu < PhiVc/2 | lot Regd 9.6. | 8.2           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 9.80             | 4.00        | -3.60        | 3.60          | 3.59         | 0.33    | 8.27          | Vu < PhiVc/2 | lot Regd 9.6. | 8.3           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 9.91             | 4.00        | -3.74        | 3.74          | 3.16         | 0.39    | 8.41          | Vu < PhiVc/2 | lot Regd 9.6. | 8.4           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 10.03            | 4.00        | -3.87        | 3.87          | 2.72         |         | 8.60          | Vu < PhiVc/2 | lot Regd 9.6. | 8.6           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 10.15            | 4.00        | -4.00        | 4.00          | 2.26         | 0.59    | 8.87          | Vu < PhiVc/2 | lot Regd 9.6. | 8.9           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 10.26            | 4.00        | -4.14        | 4.14          | 1.79         | 0.77    | 9.29          | Vu < PhiVc/2 | lot Regd 9.6. | 9.3           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 10.38            | 4.00        | -4.27        | 4.27          | 1.29         | 1.00    | 9.82          | Vu < PhiVc/2 | lot Regd 9.6. | 9.8           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 10.50            | 4.00        | -4.41        | 4.41          | 0.79         | 1.00    | 9.82          | Vu < PhiVc/2 | lot Reqd 9.6. | 9.8           | 0.0                   | 0.0 |
| +E+1.60H         | 1              | 10.61            | 4.00        | -4.54        | 4.54          | 0.27         | 1.00    | 9.82          | Vu < PhiVc/2 | lot Reqd 9.6. | 9.8           | 0.0                   | 0.0 |
| Maximum Forces   | & Stresses     | for Lo           | ad C        | ombina       | tions         |              |         |               |              |               |               |                       |     |

|                             |     |                    | nano  |                  |                  |                   |            |                       |
|-----------------------------|-----|--------------------|-------|------------------|------------------|-------------------|------------|-----------------------|
| Load Combination            |     |                    |       | Location (ft)    | Bending          | Stress Results (k | :-ft )     |                       |
| Segment                     |     | S                  | pan # | along Beam       | Mu : Max         | Phi*Mnx           | Stress Rat | io                    |
| MAXimum BENDING Envelope    |     |                    |       |                  |                  |                   |            |                       |
| Span # 1                    |     |                    | 1     | 10.670           | 9.22             | 10.31             | 0.89       |                       |
| +1.60H                      |     |                    |       |                  |                  |                   |            |                       |
| Span # 1                    |     |                    | 1     | 10.670           | 8.45             | 10.31             | 0.82       |                       |
| +E+1.60H                    |     |                    |       |                  |                  |                   |            |                       |
| Span # 1                    |     |                    | 1     | 10.670           | 9.22             | 10.31             | 0.89       |                       |
| +E+0.90H                    |     |                    |       |                  |                  |                   |            |                       |
| Span # 1                    |     |                    | 1     | 10.670           | 5.52             | 10.31             | 0.54       |                       |
| Overall Maximum Deflections | S   |                    |       |                  |                  |                   |            |                       |
| Load Combination Sp         | oan | Max. "-" Defl (in) | Locat | ion in Span (ft) | Load Combination | Max               |            | Location in Span (ft) |
| +0.70E+H                    | 1   | 0.0287             |       | 6.210            |                  |                   | 0.0000     | 0.000                 |